Wanted: Good Use for Supercomputer

By Nicole Hemsoth

September 15, 2011

It’s a bit unorthodox for us to bring you news from something happening on a social news site, but there’s been a great deal of buzz generated on Slashdot following a recent post in which a user wrote the following:

In about 2 weeks time I will be receiving everything necessary to build the largest x86_64-based supercomputer on the east coast of the U.S. (at least until someone takes the title away from us). It’s spec’ed to start with 1200 dual-socket six-core servers. We primarily do life-science/health/biology related tasks on our existing (fairly small) HPC. We intend to continue this usage, but to also open it up for new uses (energy comes to mind). Additionally, we’d like to lease access to recoup some of our costs. So, what’s the best Linux distro for something of this size and scale? Any that include a chargeback option/module? Additionally, due to cost contracts, we have to choose either InfiniBand or 10Gb Ethernet for the backend: which would Slashdot readers go with if they had to choose? Either way, all nodes will have four 1Gbps Ethernet ports. Finally, all nodes include only a basic onboard GPU. We intend to put powerful GPUs into the PCI-e slot and open up the new HPC for GPU related crunching. Any suggestions on the most powerful Linux friendly PCI-e GPU available?

Chances are, some, if not much, of this sounds rather unlikely to you (including, of course, the whole “largest supercomputer on the east coast” claim).

However, what’s most interesting here is not necessarily the question itself, but the extended conversation that this generated from members of the HPC user community. Many respondents (often prefacing their responses with a “this is an unlikely scenario but I’ll answer anyway” disclaimer) went far beyond merely poking holes in the soon-to-be supercomputer owner’s story (although there was plenty of hole poking) — and shed some light on real, practical opinions from HPC shops.

In the process of answering some of the user’s questions about which Linux distribution is best, whether InfiniBand or 10GbE was the proper choice, and what kind of performance benefits can be had with GPUs for a range of applications, and what cluster management solutions were the best, the HPC community inadvertently produced a compendium of first-hand insights about their own experience making purchase and use decisions at their centers or companies.

As you might imagine, comments like the following were not uncommon:

1) Something with 10gb really isn’t a “supercomputer” it is a cluster. Fine, but call it what it is. I really wouldn’t call a cluster with Infiniband a supercomputer either.

2) You really should maybe get someone who knows more about your project and someone who knows more about clusters/supercomputers. The questions you are asking are not ones I would want to see form the guy making the choices on a multimillion dollar project.

But many others provided some excellent real-world examples (or so we assume, this is the Internet) of their use of similarly-sized clusters. For instance, one user wrote:

Similar size setup in bio-informatics in Europe. We run redhat 6.1, was centos 5 and LSF. single 1gbit to each server (blades). No need for 10gb or IB unless huge mpi which no one uses. 32GB to 2TB per node – some people like enormous R datasets. All works well for our ~500 users.

Others weighed in with more specific answers about specific elements, including GPUs:

As for GPUs…be aware that the claimed performance for GPUs, especially in clusters, is virtually unattainable. You have to write code in their nasty domain-specific languages (CUDA or OpenCL for Nvidia, just OpenCL for AMD) and there isn’t really any concept of IPC baked in to the tools to allow for distributed operations. Furthermore, GPUs are also generally extroridnarly memory and memory bandwidth starved (remember, the speed comes from there being hundreds of processing elements on the card, all sharing the same memory and interface), so simply keeping them fed with data is challenging. GPGPU is also an unstable area in both relevant senses: the GPGPU software itself has a nasty tendency to hang the host when something goes wrong (which is extra fun in clusters without BMCs), and the platforms are changing at an alarming clip. AMD is somewhat worse in the “moving target” regard – they recently deprecated all 4000 series cards from being supported by GPGPU tools, and have abandoned their CTM, CAL, and Brook+ environments before settling on OpenCL, and only OpenCL.

The original author did decide to answer back with more details about why he was in such a predicament in the first place. The story that came forth was one of woe and struggle, indeed.

His response to the critics initiated some rather confident guesses about exactly what institution he was from — and who the “generous benefactor” might be.

…here’s the quick backstory behind my question(s): Our organization received a grant to pay for this from a private philanthropist that has a medical issue that is currently being researched by one of our labs (this happens to us not to infrequently). We have an existing HPC of roughly 300 nodes and 1200 cores that’s all 1Gbps connected and running Rocks 5.1. The grant money came in in two different payments. We used the first payment to buy the nodes (which are in route to arrive in 2 weeks or so). The second payment was going to pay for the GPU’s and the extra infrastructure (storage is one thing we currently have plenty of… both SAN and NAS). Unfortunately, we hit two issues: 1) one of our more seasoned enterprise admins took a new job at Apple’s new NC datacenter and 2) our cluster admin passed away from a heart attack about a week after the purchase was made. This put us into a bit of a holding pattern. We’re in the process of replacing both of them, but in the meantime we A) have the equipment arriving soon and B) have the second round of the grant money in hand now.

We’re smart enough to know that we lost two very valuable resources and we decided to step back, pause, and re-evaluate. The servers are already bought. The infrastructure, interconnects, and GPU’s are not. The old admin knew which GPU’s he wanted; unfortunately we haven’t found his research anywhere to know what and why. He had also planned to go with the latest release of Rocks, but only because he was very familiar with it. We know there are other options out there and we’ve no idea how well Rocks can scale. Additionally, I don’t see an option for chargeback with Rocks (at least not from a Google search), plus we’ve heard they recently lost a core developer. Thus, we went to the Slashdot community for advice. So I’ve already seen some good info on the IB versus 10GbE question and its much appreciated. We’re still looking for info on which Linux distro and which GPU to go for. We want to make the best decision we can and use the money as wisely as possible. But we also realize that we know what we don’t know and thought the Slashdot community could provide some experience to help us make the right decisions.

For anyone with the time and patience to read through almost 400 comments, well over half of which provide at least a useful morsel of information for someone trying to learn about what works and doesn’t for clusters around the world — it’s definitely worth a glance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UK to Launch Six Major HPC Centers

March 27, 2017

Six high performance computing centers will be formally launched in the U.K. later this week intended to provide wider access to HPC resources to U.K. Read more…

By John Russell

AI in the News: Rao in at Intel, Ng out at Baidu, Nvidia on at Tencent Cloud

March 26, 2017

Just as AI has become the leitmotif of the advanced scale computing market, infusing much of the conversation about HPC in commercial and industrial spheres, it also is impacting high-level management changes in the industry. Read more…

By Doug Black

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Quants Achieving Maximum Compute Power without the Learning Curve

The financial services industry is a fast-paced and data-intensive environment, and financial firms are realizing that they must modernize their IT infrastructures and invest in high performance computing (HPC) tools in order to survive. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Leading Solution Providers

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This