Wanted: Good Use for Supercomputer

By Nicole Hemsoth

September 15, 2011

It’s a bit unorthodox for us to bring you news from something happening on a social news site, but there’s been a great deal of buzz generated on Slashdot following a recent post in which a user wrote the following:

In about 2 weeks time I will be receiving everything necessary to build the largest x86_64-based supercomputer on the east coast of the U.S. (at least until someone takes the title away from us). It’s spec’ed to start with 1200 dual-socket six-core servers. We primarily do life-science/health/biology related tasks on our existing (fairly small) HPC. We intend to continue this usage, but to also open it up for new uses (energy comes to mind). Additionally, we’d like to lease access to recoup some of our costs. So, what’s the best Linux distro for something of this size and scale? Any that include a chargeback option/module? Additionally, due to cost contracts, we have to choose either InfiniBand or 10Gb Ethernet for the backend: which would Slashdot readers go with if they had to choose? Either way, all nodes will have four 1Gbps Ethernet ports. Finally, all nodes include only a basic onboard GPU. We intend to put powerful GPUs into the PCI-e slot and open up the new HPC for GPU related crunching. Any suggestions on the most powerful Linux friendly PCI-e GPU available?

Chances are, some, if not much, of this sounds rather unlikely to you (including, of course, the whole “largest supercomputer on the east coast” claim).

However, what’s most interesting here is not necessarily the question itself, but the extended conversation that this generated from members of the HPC user community. Many respondents (often prefacing their responses with a “this is an unlikely scenario but I’ll answer anyway” disclaimer) went far beyond merely poking holes in the soon-to-be supercomputer owner’s story (although there was plenty of hole poking) — and shed some light on real, practical opinions from HPC shops.

In the process of answering some of the user’s questions about which Linux distribution is best, whether InfiniBand or 10GbE was the proper choice, and what kind of performance benefits can be had with GPUs for a range of applications, and what cluster management solutions were the best, the HPC community inadvertently produced a compendium of first-hand insights about their own experience making purchase and use decisions at their centers or companies.

As you might imagine, comments like the following were not uncommon:

1) Something with 10gb really isn’t a “supercomputer” it is a cluster. Fine, but call it what it is. I really wouldn’t call a cluster with Infiniband a supercomputer either.

2) You really should maybe get someone who knows more about your project and someone who knows more about clusters/supercomputers. The questions you are asking are not ones I would want to see form the guy making the choices on a multimillion dollar project.

But many others provided some excellent real-world examples (or so we assume, this is the Internet) of their use of similarly-sized clusters. For instance, one user wrote:

Similar size setup in bio-informatics in Europe. We run redhat 6.1, was centos 5 and LSF. single 1gbit to each server (blades). No need for 10gb or IB unless huge mpi which no one uses. 32GB to 2TB per node – some people like enormous R datasets. All works well for our ~500 users.

Others weighed in with more specific answers about specific elements, including GPUs:

As for GPUs…be aware that the claimed performance for GPUs, especially in clusters, is virtually unattainable. You have to write code in their nasty domain-specific languages (CUDA or OpenCL for Nvidia, just OpenCL for AMD) and there isn’t really any concept of IPC baked in to the tools to allow for distributed operations. Furthermore, GPUs are also generally extroridnarly memory and memory bandwidth starved (remember, the speed comes from there being hundreds of processing elements on the card, all sharing the same memory and interface), so simply keeping them fed with data is challenging. GPGPU is also an unstable area in both relevant senses: the GPGPU software itself has a nasty tendency to hang the host when something goes wrong (which is extra fun in clusters without BMCs), and the platforms are changing at an alarming clip. AMD is somewhat worse in the “moving target” regard – they recently deprecated all 4000 series cards from being supported by GPGPU tools, and have abandoned their CTM, CAL, and Brook+ environments before settling on OpenCL, and only OpenCL.

The original author did decide to answer back with more details about why he was in such a predicament in the first place. The story that came forth was one of woe and struggle, indeed.

His response to the critics initiated some rather confident guesses about exactly what institution he was from — and who the “generous benefactor” might be.

…here’s the quick backstory behind my question(s): Our organization received a grant to pay for this from a private philanthropist that has a medical issue that is currently being researched by one of our labs (this happens to us not to infrequently). We have an existing HPC of roughly 300 nodes and 1200 cores that’s all 1Gbps connected and running Rocks 5.1. The grant money came in in two different payments. We used the first payment to buy the nodes (which are in route to arrive in 2 weeks or so). The second payment was going to pay for the GPU’s and the extra infrastructure (storage is one thing we currently have plenty of… both SAN and NAS). Unfortunately, we hit two issues: 1) one of our more seasoned enterprise admins took a new job at Apple’s new NC datacenter and 2) our cluster admin passed away from a heart attack about a week after the purchase was made. This put us into a bit of a holding pattern. We’re in the process of replacing both of them, but in the meantime we A) have the equipment arriving soon and B) have the second round of the grant money in hand now.

We’re smart enough to know that we lost two very valuable resources and we decided to step back, pause, and re-evaluate. The servers are already bought. The infrastructure, interconnects, and GPU’s are not. The old admin knew which GPU’s he wanted; unfortunately we haven’t found his research anywhere to know what and why. He had also planned to go with the latest release of Rocks, but only because he was very familiar with it. We know there are other options out there and we’ve no idea how well Rocks can scale. Additionally, I don’t see an option for chargeback with Rocks (at least not from a Google search), plus we’ve heard they recently lost a core developer. Thus, we went to the Slashdot community for advice. So I’ve already seen some good info on the IB versus 10GbE question and its much appreciated. We’re still looking for info on which Linux distro and which GPU to go for. We want to make the best decision we can and use the money as wisely as possible. But we also realize that we know what we don’t know and thought the Slashdot community could provide some experience to help us make the right decisions.

For anyone with the time and patience to read through almost 400 comments, well over half of which provide at least a useful morsel of information for someone trying to learn about what works and doesn’t for clusters around the world — it’s definitely worth a glance.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Spoiler Alert: Glimpse Next Week’s Solar Eclipse Via Simulation from TACC, SDSC, and NASA

August 17, 2017

Can’t wait to see next week’s solar eclipse? You can at least catch glimpses of what scientists expect it will look like. A team from Predictive Science Inc. (PSI), based in San Diego, working with Stampede2 at the Read more…

By John Russell

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This