Dell to Build 10-Petaflop Supercomputer For Science

By Michael Feldman

September 22, 2011

The Texas Advanced Computing Center (TACC) has revealed plans to deploy a cutting-edge petascale supercomputer courtesy of a $27.5 million dollar NSF award. Built by Dell, the system will consist of 2 petaflops of Sandy Bridge-EP processors with an 8 petaflop boost from Intel’s Many Integrated Core (MIC) coprocessors. The machine is scheduled to boot up in late 2012 and be ready for production in January 2013.

Not only is this Dell’s first petascale system — at least the first one announced publicly — it will likely be the first deployment of Intel’s commercial MIC technology. In this case, the chips in question are pre-production versions of Knights Corner, the first commercial part in that product line. These early chips will be identical to the future production parts.

Stampede, as the system will be called, is meant to serve both traditional number crunching HPC applications and data-driven analytics applications within NSF’s eXtreme Digital (XD) user community. XD includes the Extreme Science and Engineering Discovery Environment (XSEDE) project, the sucessor to TeraGrid that encompasses more than a dozen universities and two research labs. At 10 teraflops, Stampede will be the most powerful resource for XD users.

According to Jay Boisseau, TACC Director and PI of the Stampede project, the system is expected to have several hundred projects running on it from day one. “We want to bring in users with big data sets that are doing large-scale analyses, as well as the simulations types of users,” he told HPCwire.

Data-intensive science applications include traditional ones like bioinformatics, but also codes from geosciences and astronomy — application domains that are already accumulating large amounts of digital data. Boisseau thinks as much as half of Stampede’s resources will be devoted to these types of applications.

The data-intensive support will bring in a new set of users, many of which are not as HPC savvy as the traditional simulations folks. For that, Boisseau is planning to develop a much richer software environment for this group, including new application portals and gateways, as was begun under the TeraGrid project. In addition, they will also look to bring in experts in statistics, data mining, data management, and so on, in order to support the data-driven application domain.

Some of the expertise and software resources are already built into the project via university collaborations. Besides The University of Texas at Austin, partner schools include Clemson University, University of Colorado at Boulder, Cornell University, Indiana University, Ohio State University, and The University of Texas at El Paso.

Hardware-wise, the foundation of Stampede is a 2 petaflop cluster with 6,400 x86 compute nodes, lashed together with FDR (56 Gbps) InfiniBand from Mellanox. Each node will house two of Intel’s 8-core Xeon E5 (aka Sandy Bridge-EP) and 32 GB of DRAM.

Stampede will also include 16 big memory nodes, each sporting 1 terabyte of DRAM and 2 NVIDIA GPUs. Memory-wise, that’s not exactly in SGI Altix UV territory, but it’s a respectable capacity for extra-large SMP applications. Boisseau says they’re also considering ScaleMP’s virtual SMP solution to construct a shared memory environment across all 16 TB. The shared memory sub-cluster is slated to be used for some of the big data analytics applications that Stampede will host.

The cluster will also be hooked up to to Lustre storage nodes, also suppled by Dell. It will consist of 14 PB of disk, and deliver an aggregated bandwidth of 150 GB/second. “Over the lifetime of the project we’re expecting that to grow substantially both in capacity and bandwidth over the lifetime of the system,” said Boisseau.

The Dell system was developed by its Data Center Solutions division, under the code-name Zeus. Although the technology will debut in Stampede, the company is expecting to make the Zeus product generally available for “hyperscale” supercomputing in 2012.

Stampede’s base cluster and storage nodes represent the lion’s share of the NSF funding at $25 million. The remaining $2.5 million will go toward 8 petaflops worth of MIC coprocessors, which will be hooked into the x86 nodes via PCIe 3.0 links. MIC is Intel’s x86-based manycore HPC architecture aimed at highly parallel codes, and competes head on with NVIDIA’s Tesla and AMD’s Firestream GPUS.

GPGPU enthusiasts were not completely slighted though. Besides the GPUs in the shared memory nodes, 128 of the 6,400 regular nodes will be outfitted with NVIDIA’s next-generation Kepler GPUs to support remote visualization. Kepler is the successor to Fermi, NVIDIA’s current GPU architecture. Tesla implementations of Kepler aimed at HPC servers should begin shipping sometime in 2012.

Intel has not announced an official launch date for the Knights Corner MIC product, but it should be generally available sometime in 2013, or perhaps late 2012 if Intel’s 22nm process technology ramps up more quickly. The actual number of MICs in Stampede is not public, but Intel has promised them enough to deliver 8 peak petaflops.

Using a little quick math, each MIC chip will probably need to deliver at least 1.3 to 1.5 double precision teraflops to hit the 8 petaflop performance target. Coincidentally, the NVIDIA’s Kepler GPU is also expected to deliver about 1.3 to 1.5 double precision teraflops. Note that the first MIC parts will be implemented with Intel’s Tri-Gate 22nm technology, while the Kepler GPUs will be manufactured on standard 28nm technology.

At this point, Boisseau is expecting to receive all the Intel MIC coprocessors sometime this fall, possibly in time for a Linpack run at the November’s TOP500. By that time, all the Sandy Bridge compute nodes should be fully deployed. If all goes according to plan, early access users should be able to start running codes on the machine by December 2012.

Although MIC will support a number of parallel computing models, the most straightforward one is OpenMP. This will be especially advantageous for users with hybrid MPI-OpenMP codes. The idea would be to just offload the OpenMP chunks to the coprocessors in order to parallelize those loops. Users with straight MPI codes will need to do more work to tap into MIC acceleration.

There is already an upgraded version of Stampede on the drawing board. About two years into the project, TACC is planning to deploy the second generation MIC coprocessors, with another (smaller) batch of chips. The goal is to add 5 more petaflops to the system, bringing its grand total to 15 peak petaflops sometime around the middle of the decade.

The NSF is will be funding Stampede for at least four years. Besides the inital $27.5 million outlay to build and install the system, an additional $24 million or so for system operation and support is expected to be on the table soon, bringing the total Stampede investment to more than $50 million. The project also includes an option for renewal in 2017, which would result in the deployment of an even larger and more powerful machine toward the end of the decade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This