Dell to Build 10-Petaflop Supercomputer For Science

By Michael Feldman

September 22, 2011

The Texas Advanced Computing Center (TACC) has revealed plans to deploy a cutting-edge petascale supercomputer courtesy of a $27.5 million dollar NSF award. Built by Dell, the system will consist of 2 petaflops of Sandy Bridge-EP processors with an 8 petaflop boost from Intel’s Many Integrated Core (MIC) coprocessors. The machine is scheduled to boot up in late 2012 and be ready for production in January 2013.

Not only is this Dell’s first petascale system — at least the first one announced publicly — it will likely be the first deployment of Intel’s commercial MIC technology. In this case, the chips in question are pre-production versions of Knights Corner, the first commercial part in that product line. These early chips will be identical to the future production parts.

Stampede, as the system will be called, is meant to serve both traditional number crunching HPC applications and data-driven analytics applications within NSF’s eXtreme Digital (XD) user community. XD includes the Extreme Science and Engineering Discovery Environment (XSEDE) project, the sucessor to TeraGrid that encompasses more than a dozen universities and two research labs. At 10 teraflops, Stampede will be the most powerful resource for XD users.

According to Jay Boisseau, TACC Director and PI of the Stampede project, the system is expected to have several hundred projects running on it from day one. “We want to bring in users with big data sets that are doing large-scale analyses, as well as the simulations types of users,” he told HPCwire.

Data-intensive science applications include traditional ones like bioinformatics, but also codes from geosciences and astronomy — application domains that are already accumulating large amounts of digital data. Boisseau thinks as much as half of Stampede’s resources will be devoted to these types of applications.

The data-intensive support will bring in a new set of users, many of which are not as HPC savvy as the traditional simulations folks. For that, Boisseau is planning to develop a much richer software environment for this group, including new application portals and gateways, as was begun under the TeraGrid project. In addition, they will also look to bring in experts in statistics, data mining, data management, and so on, in order to support the data-driven application domain.

Some of the expertise and software resources are already built into the project via university collaborations. Besides The University of Texas at Austin, partner schools include Clemson University, University of Colorado at Boulder, Cornell University, Indiana University, Ohio State University, and The University of Texas at El Paso.

Hardware-wise, the foundation of Stampede is a 2 petaflop cluster with 6,400 x86 compute nodes, lashed together with FDR (56 Gbps) InfiniBand from Mellanox. Each node will house two of Intel’s 8-core Xeon E5 (aka Sandy Bridge-EP) and 32 GB of DRAM.

Stampede will also include 16 big memory nodes, each sporting 1 terabyte of DRAM and 2 NVIDIA GPUs. Memory-wise, that’s not exactly in SGI Altix UV territory, but it’s a respectable capacity for extra-large SMP applications. Boisseau says they’re also considering ScaleMP’s virtual SMP solution to construct a shared memory environment across all 16 TB. The shared memory sub-cluster is slated to be used for some of the big data analytics applications that Stampede will host.

The cluster will also be hooked up to to Lustre storage nodes, also suppled by Dell. It will consist of 14 PB of disk, and deliver an aggregated bandwidth of 150 GB/second. “Over the lifetime of the project we’re expecting that to grow substantially both in capacity and bandwidth over the lifetime of the system,” said Boisseau.

The Dell system was developed by its Data Center Solutions division, under the code-name Zeus. Although the technology will debut in Stampede, the company is expecting to make the Zeus product generally available for “hyperscale” supercomputing in 2012.

Stampede’s base cluster and storage nodes represent the lion’s share of the NSF funding at $25 million. The remaining $2.5 million will go toward 8 petaflops worth of MIC coprocessors, which will be hooked into the x86 nodes via PCIe 3.0 links. MIC is Intel’s x86-based manycore HPC architecture aimed at highly parallel codes, and competes head on with NVIDIA’s Tesla and AMD’s Firestream GPUS.

GPGPU enthusiasts were not completely slighted though. Besides the GPUs in the shared memory nodes, 128 of the 6,400 regular nodes will be outfitted with NVIDIA’s next-generation Kepler GPUs to support remote visualization. Kepler is the successor to Fermi, NVIDIA’s current GPU architecture. Tesla implementations of Kepler aimed at HPC servers should begin shipping sometime in 2012.

Intel has not announced an official launch date for the Knights Corner MIC product, but it should be generally available sometime in 2013, or perhaps late 2012 if Intel’s 22nm process technology ramps up more quickly. The actual number of MICs in Stampede is not public, but Intel has promised them enough to deliver 8 peak petaflops.

Using a little quick math, each MIC chip will probably need to deliver at least 1.3 to 1.5 double precision teraflops to hit the 8 petaflop performance target. Coincidentally, the NVIDIA’s Kepler GPU is also expected to deliver about 1.3 to 1.5 double precision teraflops. Note that the first MIC parts will be implemented with Intel’s Tri-Gate 22nm technology, while the Kepler GPUs will be manufactured on standard 28nm technology.

At this point, Boisseau is expecting to receive all the Intel MIC coprocessors sometime this fall, possibly in time for a Linpack run at the November’s TOP500. By that time, all the Sandy Bridge compute nodes should be fully deployed. If all goes according to plan, early access users should be able to start running codes on the machine by December 2012.

Although MIC will support a number of parallel computing models, the most straightforward one is OpenMP. This will be especially advantageous for users with hybrid MPI-OpenMP codes. The idea would be to just offload the OpenMP chunks to the coprocessors in order to parallelize those loops. Users with straight MPI codes will need to do more work to tap into MIC acceleration.

There is already an upgraded version of Stampede on the drawing board. About two years into the project, TACC is planning to deploy the second generation MIC coprocessors, with another (smaller) batch of chips. The goal is to add 5 more petaflops to the system, bringing its grand total to 15 peak petaflops sometime around the middle of the decade.

The NSF is will be funding Stampede for at least four years. Besides the inital $27.5 million outlay to build and install the system, an additional $24 million or so for system operation and support is expected to be on the table soon, bringing the total Stampede investment to more than $50 million. The project also includes an option for renewal in 2017, which would result in the deployment of an even larger and more powerful machine toward the end of the decade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip using standard CMOS fabrication. At Hot Chips 31 in Stanfor Read more…

By Tiffany Trader

Talk to Me: Nvidia Claims NLP Inference, Training Records

August 15, 2019

Nvidia says it’s achieved significant advances in conversation natural language processing (NLP) training and inference, enabling more complex, immediate-response interchanges between customers and chatbots. And the co Read more…

By Doug Black

Trump Administration and NIST Issue AI Standards Development Plan

August 14, 2019

Efforts to develop AI are gathering steam fast. On Monday, the White House issued a federal plan to help develop technical standards for AI following up on a mandate contained in the Administration’s AI Executive Order Read more…

By John Russell

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Cloudy with a Chance of Mainframes

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

Rapid rates of change sometimes result in unexpected bedfellows. Read more…

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a good understanding of the early universe, its fate billions Read more…

By Rob Johnson

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

Building Diversity and Broader Engagement in the HPC Community

August 7, 2019

Increasing diversity and inclusion in HPC is a community-building effort. Representation of both issues and individuals matters - the more people see HPC in a w Read more…

By AJ Lauer

Xilinx vs. Intel: FPGA Market Leaders Launch Server Accelerator Cards

August 6, 2019

The two FPGA market leaders, Intel and Xilinx, both announced new accelerator cards this week designed to handle specialized, compute-intensive workloads and un Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This