Could the “C” in HPC Stand for “Cloud”?

By Chris Porter

September 26, 2011

By Chris Porter

Now that “Cloud Computing” has become the IT buzzword du jour for professionals and vendors looking to cash in on the next big change in datacenters,  many in the HPC community are evaluating whether HPC workloads are appropriate for cloud environments.  At least a portion of this debate is associated with questions such as “What is cloud computing?” and “What qualifies a workload as HPC?”.

It’s generally accepted that HPC workloads are simply not amenable to “one size fits all” categorizations.  This was clearly demonstrated in the early 2000’s when the world started converting from centralized big iron to distributed computing clusters.  Such an approach brought with it commodities of scale and COTS hardware, but also something else—choice.  An HPC consumer could spend money on HPC in ways that benefited the bottom line and only had to spend it on HPC. Therefore, some HPC systems were small in node count, large in memory per core, narrow in bandwidth or high in latency between nodes, while other systems were designed using different sets of parameters.  All were tailored to the applications being run and limited only by the creativity of their architects and the budgets those architects were constrained to work within.

But, increasingly, the pressure to reduce the cost of doing business is an unrelenting theme for most companies and IT departments. Budgetary concerns are a constant concern for every company, so the cloud computing model of pay-as-you-go is increasingly appealing.  However, not all types of computing have been well validated on cloud infrastructures.  

In addition, most infrastructure as a service (IaaS) vendors such as Rackspace, Amazon, Savvis and others use various virtualization technologies to manage the underlying hardware upon which they build their offerings. Unfortunately the virtualization technologies used tend to vary from vendor to vendor and are sometimes kept secret (as in the case of Amazon’s EC2).  Despite the misconception in the market that “cloud=virtualization”, virtualization is often a key component to cloud infrastructures. Therefore, the question about virtual machines vs. physical machines for HPC applications is also germane to the discussion of HPC in the cloud.

The virtualization question

HPC architects have been slow to adopt virtualization technologies for two primary reasons:

1)      The common assumption that virtualization impacts application performance significantly enough that any gains in flexibility are far outweighed by the loss of application throughput.

2)      Utilization on traditional HPC infrastructure is very high (usually between 80-95 percent).  Therefore, the typical driving business case for virtualization (e.g. utilization of hardware, server consolidation or license utilization) lack sufficient merit to justify the added complexity and expense of running workload in virtualized resources. 

In many cases, however, many HPC architects would be willing to lose up to 5 percent of application performance to achieve the flexibility and resilience that virtual environments offer. But there are several reasons HPC users may make this compromise, including:

  • Security – Virtual machines (VMs) can be added and subtracted from VLANs as part of their instantiation/destruction process.  Some HPC environments require data and host isolation between groups of users or even between the users themselves.  Traditionally, VLANs are used with physical servers, creating silos of resources.  In any variable load environment, silo creation results in lower utilization of the resources.  VMs and VLANs can be used in consort to isolate users from each other and isolate data to the users who should have access to it.
  • Application Stack Control – Many applications require certain OS versions, updates, libraries, configurations, etc.  In a mixed application environment where multiple applications share the same physical hardware, such specific stack requirements can be difficult to satisfy.  Using virtualization makes that task easier since the whole stack can be deployed as part of the application.
  • High Value Asset Maximization – In a heterogeneous HPC system, the newest (and thereby fastest) machines are often in highest demand.  To handle this demand, some organizations use a reservation system to minimize conflicts between users.  Unfortunately, such reservations often go underutilized.  In comparison, when using virtual machines for computing, the migration facility available within most hypervisors allows opportunistic workloads to use high value assets even after a reservation window opens for a different user.  If the reserving user eventually submits workload against his reservation, then the opportunistic workload can be migrated to lower value assets to continue processing without losing any CPU cycles.
  • Large Execution Time Jobs – Several HPC applications offer no checkpoint restart capability. VM technology can capture and checkpoint the entire state of the virtual machine, however, allowing for checkpoint of previously non-checkpointable applications.  If jobs run long enough to be at the same MBTF for the solution as a whole, then the checkpoint facility available within virtual machines may be very attractive.  Additionally, if server maintenance is a common or predictable occurrence, then checkpoint migration or suspension of a long running job within a VM could prevent loss of compute time while removing any barriers to performing regular server maintenance. 

A business case for HPC clouds

The economic advantages a cloud-style infrastructure offers—paying only for the IT resources consumed—has been the end goal of “utility”-style computing for nearly a decade.  It’s also an extremely attractive option for HPC datacenters because workloads can vary so much—going from heavy use to idling at any giving time.

There are several key drivers for considering a cloud implementation:

  • Pay-per-use – customers pay by the hour for services such as compute instances or at the consumption level for services such as storage and data transfer
  • Near infinite infrastructure – available in near real time, as well as the contra positive—infrastructure can scale back to near zero when there is no workload
  • Provisioning based on workload –operating systems or server types can be allocated at any time based on workload, providing significant improvements in provisioning flexibility

Under the correct conditions, these factors can present major opportunities to cut costs and better serve internal users.

Barriers to cloud

Despite the advantages of cloud, there are also a number of barriers to consider when thinking about whether cloud will fit into an HPC environment.

  • Security and Intellectual Property –The data in the cloud very often represents core intellectual property for the commercial enterprise. The possibility that commercial competitors could be using the same shared computing resource, which could lead to espionage, cannot be ignored.  From a legal standpoint, published contracts for IP protection and indemnification offer potential adopters little recourse if a leak occurs.
  • Licensing – Most commercial enterprises employ third-party software from an ISV to run or manage their HPC simulations. With each of these applications comes a legal agreement about where the application can be executed, and often these agreements restrict applications to a customer’s site.  If legal issues are not barriers then licenses being consumed in the cloud and locally in a datacenter offer technical challenges for keeping the licenses available to all application instances that require them.
  • Data Movement – Until an organization adopts cloud computing and abandons their own datacenters, models for simulations (or methods for creating them) and results must be transferred between the cloud provider and the customer’s datacenter.  This is complicated, however, as Internet bandwidth is very limited for transferring large files, and for most IaaS providers, all data moved in and out of the cloud is a “for charge” service by the gigabyte.

Pricing Model – The pay-per-use model often sounds very enticing to customers because prices are based on an hour of compute time. However, for long term usage public cloud prices are typically two to three times more expensive than owning the hardware and maintaining it yourself over the course of two years.  Companies should strategically balance when it is advantageous to use the public cloud versus local servers.

Cloud for HPC

HPC datacenters must consider both the business case and the barriers that come with cloud computing to determine whether the model can fit into their organization and which model can best work for them.  Achieving HPC in a cloud environment requires a few well-chosen tools, an adequate hypervisor platform, workload manager and an infrastructure management toolkit.  A management toolkit should provide policy definition, enforcement, provisioning management, resource reservations, and reporting.  The hypervisor platform should provide a good foundation for the virtual portion of your cloud resources.  Finally, the workload manager should provide task management.

For most large HPC environments, users will want to consider either a private cloud or hybrid solution where external public clouds can be used during peak demand, otherwise known as “cloud bursting.” Smaller HPC use environments may want to consider pure, or public, cloud where all the resources will be consumed in the cloud.  No matter which flavor of cloud is used, it will be particularly important to make sure infrastructure includes a management layer that can take advantage of both physical and virtual resources since HPC applications are still primarily housed on physical machines.  Ideally, the management layer should be able to unite the hypervisor and physical environments into a single, dynamically shared infrastructure to support a heterogeneous environment, as well as multiple operating systems. 

A hybrid approach can be very advantageous for HPC environments because it can provide the extra power boost needed to complete jobs.  In particular, a cloud bursting approach should be considered for the following:

  • When local job pend time estimates for a job get very large.
  • When local time elapsed run time is large. A corollary to this condition is when the job can be parallelized, but there are insufficient resources locally to run the job quickly—then cloud bursting the job may return results to users sooner than allowing the job to run on insufficient resources.
  • When the job’s data transfer requirements into and out of the cloud are small.

Once the best cloud implementation for an organization has been determined, IaaS vendors can be evaluated based on a number of different methods, including benchmarking, to see which provider is best suited for that organization’s application and workload needs.  Evaluations should include factors such as:

  • Pure performance
  • Reliability
  • Instantiation speed
  • Pricing

The negotiation and pricing process and policies of each IaaS provider should also be considered, as well as evaluating the reliability against SLAs.  Considering each of these factors should go a long way toward helping an organization choose the best provider for their purposes.

Summary

HPC users should move beyond the “one size fits all” notion when it comes to HPC environments.  There are still lots of choices available to HPC users today, and one of those choices is cloud computing.  Under the right conditions with the right management software, the cloud can be very useful for HPC applications.

Chris Porter is Product Manager, HPC Cloud, for Platform Computing.  Chris will be speaking at SC’11 on Nov 17th 10:30 – 11 am and he’ll asking the question ‘To Burst or not to Burst?’ and weighing the benefits HPC application in the cloud.  Chris is the author of numerous whitepapers, including a recent benchmarking evaluation that compared three major providers of public cloud resources for HPC, “Harnessing public clouds in HPC: Are all infrastructure providers created equal?”

Platform Computing will be at SC’11 in Seattle, November 12-18, 2011 at Booth 1117. www.platform.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s Hot and What’s Not at ISC 2018?

June 22, 2018

As the calendar rolls around to late June we see the ISC conference, held in Frankfurt (June 24th-28th), heave into view. With some of the pre-show announcements already starting to roll out, what do we think some of the Read more…

By Dairsie Latimer

Servers in Orbit, HPE Apollos Make 4,500 Trips Around Earth

June 22, 2018

The International Space Station shines a little brighter in the night sky thanks to what amounts to an orbiting supercomputer lofted to the outpost last year as part of a year-long experiment to determine if high-end com Read more…

By George Leopold

HPCwire Readers’ and Editors’ Choice Awards Turns 15

June 22, 2018

A hallmark of sustainability is this: If you are not serving a need effectively and efficiently you do not last. The HPCwire Readers’ and Editors’ Choice awards program has stood the test of time. Each year, our read Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Taking the AI Training Wheels Off: From PoC to Production

Even though it seems simple now, there were a lot of skills to master in learning to ride a bike. From balancing on two wheels, and steering in a straight line, to going around corners and stopping before running over the dog, it took lots of practice to master these skills. Read more…

Tribute: Dr. Bob Borchers, 1936-2018

June 21, 2018

Dr. Bob Borchers, a leader in the high performance computing community for decades, passed away peacefully in Maui, Hawaii, on June 7th. His memorial service will be held on June 22nd in Reston, Virginia. Dr. Borchers Read more…

By Ann Redelfs

What’s Hot and What’s Not at ISC 2018?

June 22, 2018

As the calendar rolls around to late June we see the ISC conference, held in Frankfurt (June 24th-28th), heave into view. With some of the pre-show announcement Read more…

By Dairsie Latimer

Servers in Orbit, HPE Apollos Make 4,500 Trips Around Earth

June 22, 2018

The International Space Station shines a little brighter in the night sky thanks to what amounts to an orbiting supercomputer lofted to the outpost last year as Read more…

By George Leopold

HPCwire Readers’ and Editors’ Choice Awards Turns 15

June 22, 2018

A hallmark of sustainability is this: If you are not serving a need effectively and efficiently you do not last. The HPCwire Readers’ and Editors’ Choice aw Read more…

By Tiffany Trader

ISC 2018 Preview from @hpcnotes

June 21, 2018

Prepare for your social media feed to be saturated with #HPC, #ISC18, #Top500, etc. Prepare for your mainstream media to talk about supercomputers (in between t Read more…

By Andrew Jones

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

European HPC Summit Week and PRACEdays 2018: Slaying Dragons and SHAPEing Futures One SME at a Time

June 20, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened May 29, 2018. The conference was chair Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

Cray Introduces All Flash Lustre Storage Solution Targeting HPC

June 19, 2018

Citing the rise of IOPS-intensive workflows and more affordable flash technology, Cray today introduced the L300F, a scalable all-flash storage solution whose p Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This