Could the “C” in HPC Stand for “Cloud”?

By Chris Porter

September 26, 2011

By Chris Porter

Now that “Cloud Computing” has become the IT buzzword du jour for professionals and vendors looking to cash in on the next big change in datacenters,  many in the HPC community are evaluating whether HPC workloads are appropriate for cloud environments.  At least a portion of this debate is associated with questions such as “What is cloud computing?” and “What qualifies a workload as HPC?”.

It’s generally accepted that HPC workloads are simply not amenable to “one size fits all” categorizations.  This was clearly demonstrated in the early 2000’s when the world started converting from centralized big iron to distributed computing clusters.  Such an approach brought with it commodities of scale and COTS hardware, but also something else—choice.  An HPC consumer could spend money on HPC in ways that benefited the bottom line and only had to spend it on HPC. Therefore, some HPC systems were small in node count, large in memory per core, narrow in bandwidth or high in latency between nodes, while other systems were designed using different sets of parameters.  All were tailored to the applications being run and limited only by the creativity of their architects and the budgets those architects were constrained to work within.

But, increasingly, the pressure to reduce the cost of doing business is an unrelenting theme for most companies and IT departments. Budgetary concerns are a constant concern for every company, so the cloud computing model of pay-as-you-go is increasingly appealing.  However, not all types of computing have been well validated on cloud infrastructures.  

In addition, most infrastructure as a service (IaaS) vendors such as Rackspace, Amazon, Savvis and others use various virtualization technologies to manage the underlying hardware upon which they build their offerings. Unfortunately the virtualization technologies used tend to vary from vendor to vendor and are sometimes kept secret (as in the case of Amazon’s EC2).  Despite the misconception in the market that “cloud=virtualization”, virtualization is often a key component to cloud infrastructures. Therefore, the question about virtual machines vs. physical machines for HPC applications is also germane to the discussion of HPC in the cloud.

The virtualization question

HPC architects have been slow to adopt virtualization technologies for two primary reasons:

1)      The common assumption that virtualization impacts application performance significantly enough that any gains in flexibility are far outweighed by the loss of application throughput.

2)      Utilization on traditional HPC infrastructure is very high (usually between 80-95 percent).  Therefore, the typical driving business case for virtualization (e.g. utilization of hardware, server consolidation or license utilization) lack sufficient merit to justify the added complexity and expense of running workload in virtualized resources. 

In many cases, however, many HPC architects would be willing to lose up to 5 percent of application performance to achieve the flexibility and resilience that virtual environments offer. But there are several reasons HPC users may make this compromise, including:

  • Security – Virtual machines (VMs) can be added and subtracted from VLANs as part of their instantiation/destruction process.  Some HPC environments require data and host isolation between groups of users or even between the users themselves.  Traditionally, VLANs are used with physical servers, creating silos of resources.  In any variable load environment, silo creation results in lower utilization of the resources.  VMs and VLANs can be used in consort to isolate users from each other and isolate data to the users who should have access to it.
  • Application Stack Control – Many applications require certain OS versions, updates, libraries, configurations, etc.  In a mixed application environment where multiple applications share the same physical hardware, such specific stack requirements can be difficult to satisfy.  Using virtualization makes that task easier since the whole stack can be deployed as part of the application.
  • High Value Asset Maximization – In a heterogeneous HPC system, the newest (and thereby fastest) machines are often in highest demand.  To handle this demand, some organizations use a reservation system to minimize conflicts between users.  Unfortunately, such reservations often go underutilized.  In comparison, when using virtual machines for computing, the migration facility available within most hypervisors allows opportunistic workloads to use high value assets even after a reservation window opens for a different user.  If the reserving user eventually submits workload against his reservation, then the opportunistic workload can be migrated to lower value assets to continue processing without losing any CPU cycles.
  • Large Execution Time Jobs – Several HPC applications offer no checkpoint restart capability. VM technology can capture and checkpoint the entire state of the virtual machine, however, allowing for checkpoint of previously non-checkpointable applications.  If jobs run long enough to be at the same MBTF for the solution as a whole, then the checkpoint facility available within virtual machines may be very attractive.  Additionally, if server maintenance is a common or predictable occurrence, then checkpoint migration or suspension of a long running job within a VM could prevent loss of compute time while removing any barriers to performing regular server maintenance. 

A business case for HPC clouds

The economic advantages a cloud-style infrastructure offers—paying only for the IT resources consumed—has been the end goal of “utility”-style computing for nearly a decade.  It’s also an extremely attractive option for HPC datacenters because workloads can vary so much—going from heavy use to idling at any giving time.

There are several key drivers for considering a cloud implementation:

  • Pay-per-use – customers pay by the hour for services such as compute instances or at the consumption level for services such as storage and data transfer
  • Near infinite infrastructure – available in near real time, as well as the contra positive—infrastructure can scale back to near zero when there is no workload
  • Provisioning based on workload –operating systems or server types can be allocated at any time based on workload, providing significant improvements in provisioning flexibility

Under the correct conditions, these factors can present major opportunities to cut costs and better serve internal users.

Barriers to cloud

Despite the advantages of cloud, there are also a number of barriers to consider when thinking about whether cloud will fit into an HPC environment.

  • Security and Intellectual Property –The data in the cloud very often represents core intellectual property for the commercial enterprise. The possibility that commercial competitors could be using the same shared computing resource, which could lead to espionage, cannot be ignored.  From a legal standpoint, published contracts for IP protection and indemnification offer potential adopters little recourse if a leak occurs.
  • Licensing – Most commercial enterprises employ third-party software from an ISV to run or manage their HPC simulations. With each of these applications comes a legal agreement about where the application can be executed, and often these agreements restrict applications to a customer’s site.  If legal issues are not barriers then licenses being consumed in the cloud and locally in a datacenter offer technical challenges for keeping the licenses available to all application instances that require them.
  • Data Movement – Until an organization adopts cloud computing and abandons their own datacenters, models for simulations (or methods for creating them) and results must be transferred between the cloud provider and the customer’s datacenter.  This is complicated, however, as Internet bandwidth is very limited for transferring large files, and for most IaaS providers, all data moved in and out of the cloud is a “for charge” service by the gigabyte.

Pricing Model – The pay-per-use model often sounds very enticing to customers because prices are based on an hour of compute time. However, for long term usage public cloud prices are typically two to three times more expensive than owning the hardware and maintaining it yourself over the course of two years.  Companies should strategically balance when it is advantageous to use the public cloud versus local servers.

Cloud for HPC

HPC datacenters must consider both the business case and the barriers that come with cloud computing to determine whether the model can fit into their organization and which model can best work for them.  Achieving HPC in a cloud environment requires a few well-chosen tools, an adequate hypervisor platform, workload manager and an infrastructure management toolkit.  A management toolkit should provide policy definition, enforcement, provisioning management, resource reservations, and reporting.  The hypervisor platform should provide a good foundation for the virtual portion of your cloud resources.  Finally, the workload manager should provide task management.

For most large HPC environments, users will want to consider either a private cloud or hybrid solution where external public clouds can be used during peak demand, otherwise known as “cloud bursting.” Smaller HPC use environments may want to consider pure, or public, cloud where all the resources will be consumed in the cloud.  No matter which flavor of cloud is used, it will be particularly important to make sure infrastructure includes a management layer that can take advantage of both physical and virtual resources since HPC applications are still primarily housed on physical machines.  Ideally, the management layer should be able to unite the hypervisor and physical environments into a single, dynamically shared infrastructure to support a heterogeneous environment, as well as multiple operating systems. 

A hybrid approach can be very advantageous for HPC environments because it can provide the extra power boost needed to complete jobs.  In particular, a cloud bursting approach should be considered for the following:

  • When local job pend time estimates for a job get very large.
  • When local time elapsed run time is large. A corollary to this condition is when the job can be parallelized, but there are insufficient resources locally to run the job quickly—then cloud bursting the job may return results to users sooner than allowing the job to run on insufficient resources.
  • When the job’s data transfer requirements into and out of the cloud are small.

Once the best cloud implementation for an organization has been determined, IaaS vendors can be evaluated based on a number of different methods, including benchmarking, to see which provider is best suited for that organization’s application and workload needs.  Evaluations should include factors such as:

  • Pure performance
  • Reliability
  • Instantiation speed
  • Pricing

The negotiation and pricing process and policies of each IaaS provider should also be considered, as well as evaluating the reliability against SLAs.  Considering each of these factors should go a long way toward helping an organization choose the best provider for their purposes.

Summary

HPC users should move beyond the “one size fits all” notion when it comes to HPC environments.  There are still lots of choices available to HPC users today, and one of those choices is cloud computing.  Under the right conditions with the right management software, the cloud can be very useful for HPC applications.

Chris Porter is Product Manager, HPC Cloud, for Platform Computing.  Chris will be speaking at SC’11 on Nov 17th 10:30 – 11 am and he’ll asking the question ‘To Burst or not to Burst?’ and weighing the benefits HPC application in the cloud.  Chris is the author of numerous whitepapers, including a recent benchmarking evaluation that compared three major providers of public cloud resources for HPC, “Harnessing public clouds in HPC: Are all infrastructure providers created equal?”

Platform Computing will be at SC’11 in Seattle, November 12-18, 2011 at Booth 1117. www.platform.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This