Could the “C” in HPC Stand for “Cloud”?

By Chris Porter

September 26, 2011

By Chris Porter

Now that “Cloud Computing” has become the IT buzzword du jour for professionals and vendors looking to cash in on the next big change in datacenters,  many in the HPC community are evaluating whether HPC workloads are appropriate for cloud environments.  At least a portion of this debate is associated with questions such as “What is cloud computing?” and “What qualifies a workload as HPC?”.

It’s generally accepted that HPC workloads are simply not amenable to “one size fits all” categorizations.  This was clearly demonstrated in the early 2000’s when the world started converting from centralized big iron to distributed computing clusters.  Such an approach brought with it commodities of scale and COTS hardware, but also something else—choice.  An HPC consumer could spend money on HPC in ways that benefited the bottom line and only had to spend it on HPC. Therefore, some HPC systems were small in node count, large in memory per core, narrow in bandwidth or high in latency between nodes, while other systems were designed using different sets of parameters.  All were tailored to the applications being run and limited only by the creativity of their architects and the budgets those architects were constrained to work within.

But, increasingly, the pressure to reduce the cost of doing business is an unrelenting theme for most companies and IT departments. Budgetary concerns are a constant concern for every company, so the cloud computing model of pay-as-you-go is increasingly appealing.  However, not all types of computing have been well validated on cloud infrastructures.  

In addition, most infrastructure as a service (IaaS) vendors such as Rackspace, Amazon, Savvis and others use various virtualization technologies to manage the underlying hardware upon which they build their offerings. Unfortunately the virtualization technologies used tend to vary from vendor to vendor and are sometimes kept secret (as in the case of Amazon’s EC2).  Despite the misconception in the market that “cloud=virtualization”, virtualization is often a key component to cloud infrastructures. Therefore, the question about virtual machines vs. physical machines for HPC applications is also germane to the discussion of HPC in the cloud.

The virtualization question

HPC architects have been slow to adopt virtualization technologies for two primary reasons:

1)      The common assumption that virtualization impacts application performance significantly enough that any gains in flexibility are far outweighed by the loss of application throughput.

2)      Utilization on traditional HPC infrastructure is very high (usually between 80-95 percent).  Therefore, the typical driving business case for virtualization (e.g. utilization of hardware, server consolidation or license utilization) lack sufficient merit to justify the added complexity and expense of running workload in virtualized resources. 

In many cases, however, many HPC architects would be willing to lose up to 5 percent of application performance to achieve the flexibility and resilience that virtual environments offer. But there are several reasons HPC users may make this compromise, including:

  • Security – Virtual machines (VMs) can be added and subtracted from VLANs as part of their instantiation/destruction process.  Some HPC environments require data and host isolation between groups of users or even between the users themselves.  Traditionally, VLANs are used with physical servers, creating silos of resources.  In any variable load environment, silo creation results in lower utilization of the resources.  VMs and VLANs can be used in consort to isolate users from each other and isolate data to the users who should have access to it.
  • Application Stack Control – Many applications require certain OS versions, updates, libraries, configurations, etc.  In a mixed application environment where multiple applications share the same physical hardware, such specific stack requirements can be difficult to satisfy.  Using virtualization makes that task easier since the whole stack can be deployed as part of the application.
  • High Value Asset Maximization – In a heterogeneous HPC system, the newest (and thereby fastest) machines are often in highest demand.  To handle this demand, some organizations use a reservation system to minimize conflicts between users.  Unfortunately, such reservations often go underutilized.  In comparison, when using virtual machines for computing, the migration facility available within most hypervisors allows opportunistic workloads to use high value assets even after a reservation window opens for a different user.  If the reserving user eventually submits workload against his reservation, then the opportunistic workload can be migrated to lower value assets to continue processing without losing any CPU cycles.
  • Large Execution Time Jobs – Several HPC applications offer no checkpoint restart capability. VM technology can capture and checkpoint the entire state of the virtual machine, however, allowing for checkpoint of previously non-checkpointable applications.  If jobs run long enough to be at the same MBTF for the solution as a whole, then the checkpoint facility available within virtual machines may be very attractive.  Additionally, if server maintenance is a common or predictable occurrence, then checkpoint migration or suspension of a long running job within a VM could prevent loss of compute time while removing any barriers to performing regular server maintenance. 

A business case for HPC clouds

The economic advantages a cloud-style infrastructure offers—paying only for the IT resources consumed—has been the end goal of “utility”-style computing for nearly a decade.  It’s also an extremely attractive option for HPC datacenters because workloads can vary so much—going from heavy use to idling at any giving time.

There are several key drivers for considering a cloud implementation:

  • Pay-per-use – customers pay by the hour for services such as compute instances or at the consumption level for services such as storage and data transfer
  • Near infinite infrastructure – available in near real time, as well as the contra positive—infrastructure can scale back to near zero when there is no workload
  • Provisioning based on workload –operating systems or server types can be allocated at any time based on workload, providing significant improvements in provisioning flexibility

Under the correct conditions, these factors can present major opportunities to cut costs and better serve internal users.

Barriers to cloud

Despite the advantages of cloud, there are also a number of barriers to consider when thinking about whether cloud will fit into an HPC environment.

  • Security and Intellectual Property –The data in the cloud very often represents core intellectual property for the commercial enterprise. The possibility that commercial competitors could be using the same shared computing resource, which could lead to espionage, cannot be ignored.  From a legal standpoint, published contracts for IP protection and indemnification offer potential adopters little recourse if a leak occurs.
  • Licensing – Most commercial enterprises employ third-party software from an ISV to run or manage their HPC simulations. With each of these applications comes a legal agreement about where the application can be executed, and often these agreements restrict applications to a customer’s site.  If legal issues are not barriers then licenses being consumed in the cloud and locally in a datacenter offer technical challenges for keeping the licenses available to all application instances that require them.
  • Data Movement – Until an organization adopts cloud computing and abandons their own datacenters, models for simulations (or methods for creating them) and results must be transferred between the cloud provider and the customer’s datacenter.  This is complicated, however, as Internet bandwidth is very limited for transferring large files, and for most IaaS providers, all data moved in and out of the cloud is a “for charge” service by the gigabyte.

Pricing Model – The pay-per-use model often sounds very enticing to customers because prices are based on an hour of compute time. However, for long term usage public cloud prices are typically two to three times more expensive than owning the hardware and maintaining it yourself over the course of two years.  Companies should strategically balance when it is advantageous to use the public cloud versus local servers.

Cloud for HPC

HPC datacenters must consider both the business case and the barriers that come with cloud computing to determine whether the model can fit into their organization and which model can best work for them.  Achieving HPC in a cloud environment requires a few well-chosen tools, an adequate hypervisor platform, workload manager and an infrastructure management toolkit.  A management toolkit should provide policy definition, enforcement, provisioning management, resource reservations, and reporting.  The hypervisor platform should provide a good foundation for the virtual portion of your cloud resources.  Finally, the workload manager should provide task management.

For most large HPC environments, users will want to consider either a private cloud or hybrid solution where external public clouds can be used during peak demand, otherwise known as “cloud bursting.” Smaller HPC use environments may want to consider pure, or public, cloud where all the resources will be consumed in the cloud.  No matter which flavor of cloud is used, it will be particularly important to make sure infrastructure includes a management layer that can take advantage of both physical and virtual resources since HPC applications are still primarily housed on physical machines.  Ideally, the management layer should be able to unite the hypervisor and physical environments into a single, dynamically shared infrastructure to support a heterogeneous environment, as well as multiple operating systems. 

A hybrid approach can be very advantageous for HPC environments because it can provide the extra power boost needed to complete jobs.  In particular, a cloud bursting approach should be considered for the following:

  • When local job pend time estimates for a job get very large.
  • When local time elapsed run time is large. A corollary to this condition is when the job can be parallelized, but there are insufficient resources locally to run the job quickly—then cloud bursting the job may return results to users sooner than allowing the job to run on insufficient resources.
  • When the job’s data transfer requirements into and out of the cloud are small.

Once the best cloud implementation for an organization has been determined, IaaS vendors can be evaluated based on a number of different methods, including benchmarking, to see which provider is best suited for that organization’s application and workload needs.  Evaluations should include factors such as:

  • Pure performance
  • Reliability
  • Instantiation speed
  • Pricing

The negotiation and pricing process and policies of each IaaS provider should also be considered, as well as evaluating the reliability against SLAs.  Considering each of these factors should go a long way toward helping an organization choose the best provider for their purposes.

Summary

HPC users should move beyond the “one size fits all” notion when it comes to HPC environments.  There are still lots of choices available to HPC users today, and one of those choices is cloud computing.  Under the right conditions with the right management software, the cloud can be very useful for HPC applications.

Chris Porter is Product Manager, HPC Cloud, for Platform Computing.  Chris will be speaking at SC’11 on Nov 17th 10:30 – 11 am and he’ll asking the question ‘To Burst or not to Burst?’ and weighing the benefits HPC application in the cloud.  Chris is the author of numerous whitepapers, including a recent benchmarking evaluation that compared three major providers of public cloud resources for HPC, “Harnessing public clouds in HPC: Are all infrastructure providers created equal?”

Platform Computing will be at SC’11 in Seattle, November 12-18, 2011 at Booth 1117. www.platform.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the most experienced cluster administrators. Maintaining a balan Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This