Q&A: Jack Wells, Director of Science for the National Center for Computational Sciences

By Dawn Levy

September 26, 2011

New leader shares challenges and opportunities as the scientific community gears up for hybrid supercomputing

On July 1 Jack Wells became the director of science for the National Center for Computational Sciences (NCCS) at Oak Ridge National Laboratory (ORNL). The NCCS is a Department of Energy (DOE) Office of Science user facility for capability computing, which employs maximal computing power to solve in the shortest time possible problems of a size or complexity that no other computer can approach. Its Oak Ridge Leadership Computing Facility (OLCF) houses Jaguar, America’s fastest supercomputer, used by researchers to solve pressing science and energy challenges via modeling and simulation. Leveraging expertise and infrastructure, the NCCS also hosts the Gaea supercomputer, which ORNL operates on behalf of the National Oceanic and Atmospheric Administration, and the Kraken supercomputer, which is managed by the National Institute for Computational Sciences, a collaboration between the University of Tennessee and ORNL.

In this interview, Wells describes his vision for executing a scientific strategy for the NCCS that ensures cost-effective, state-of-the-art computing to facilitate DOE’s scientific missions. To begin this decade’s transition to exaflop computing, capable of carrying out a million trillion floating point operations per second, plans are in the works for a staged upgrade of Jaguar, a high performance computing system employing traditional CPU microprocessors, to transform it into Titan, a hybrid system employing both CPUs and GPUs,energy-efficient number crunchers that accelerate specific types of calculations in scientific application codes. As the OLCF gears up to deliver the system, expected to have a peak performance of 10–20 petaflops, by early 2013, Wells’s challenges are many.

HPCwire: What was your role in ORNL’s Computing and Computational Sciences Directorate before it housed and ran a national user facility?

Wells: I came here as a [Vanderbilt] graduate student working on Office of Science-funded projects in nuclear and atomic physics. My Ph.D. was sponsored by a grand challenge project funded under a program that started with the High Performance Computing and Communications Act of 1992—that’s called the Gore Act because Senator Gore was the main sponsor in the U.S. Senate, and it’s through that, as the old story goes, he ‘invented’ the Internet. It was that program [which partnered HPC science teams from around the country with ORNL computer scientists and hardware vendor Intel] that founded the Center for Computational Sciences (CCS) originally in 1992.

After a postdoc I came back to ORNL in ’97 as a Wigner Fellow in the CCS, and Buddy Bland [project director of the OLCF-2, which built the petascale Jaguar system, and the OLCF-3, which will build the even more powerful Titan] was my first group leader. I worked in the Scientific Computing group on parallel code performance optimization and doing my science in theoretical atomic and molecular physics. I did use the CCS computers that we had in my Ph.D. thesis—the Intel iPSC/860 and Intel XP/S 5 Paragon. Then when I came back in ’97 we had the XP/S 35 Paragon and XP/S 150 then too. We transitioned to the IBM Eagle by about 1999.

The point is that we had a CCS even before we had a Leadership Computing Facility. Beginning in 1999, I worked on basic materials and engineering physics programs in DOE’s Office of Science Basic Energy Sciences. And then when the [Center for Nanophase Materials Sciences, or CNMS] was constructed at Oak Ridge, I along with my group was matrixed to form the Nanomaterials Theory Institute at the CNMS. During that time, Oak Ridge competed for and won the DOE Leadership Computing Facility in 2004. The significant thing is that CCS has been here for almost 20 years. Next year we have a 20-year anniversary.

HPCwire: What was it like to serve as an advisor to Tennessee Senator Lamar Alexander?

Wells: Since Senator Alexander has been a senator, starting in 2003, he has requested that the Office of Science provide him a Science Fellow from Oak Ridge National Laboratory, and the Office of Science has worked with the lab to provide, now, five people. This has been a relationship where Senator Alexander has benefitted from the expertise of the Office of Science and ORNL.

As Senator Alexander is fully aware, the largest federal investment in the state of Tennessee is the one that DOE makes in its facilities in and around Oak Ridge, with ORNL being one of those. And many of the Senator’s priorities align very well with our mission. Those include clean air, abundant clean energy, increased brain power as a driver for economic competitiveness, energy security. He has been an advocate for Office of Science programs within the U.S. Senate, including leadership computing. In particular, he and New Mexico Senator Jeff Bingaman were the lead authors in the senate on the DOE High-End Computing Act of 2004 that authorized funding for the leadership computing facilities.

I was not there in 2004. I went there from 2006 to 2008, and my title there was one of a legislative fellow. A fellow is someone who is working in the Senate but is not an employee of the Senate. Many scientists and engineers do this, for example through fellowships sponsored by the American Association for the Advancement of Science. While I was there I did not do politics. I did not make policy. But I informed the Senator on topics related to high performance computing, energy technology, renewable energy, nuclear energy, and science, technology, engineering, and mathematics education and its relationship to U.S. competitiveness.

HPCwire: Did directing institutional planning for ORNL provide lessons that might guide you in your new role?

Wells: What I learned from working for our laboratory director’s office from August of 2009 through June of 2011—that’s the job I was just doing before I came to the NCCS—is that both planning and science are about the future, and we need to not be constrained in our thinking by the status quo, but to try to establish a clear and compelling vision for the future for our science programs, for our institution, and ultimately, in collaboration with others, for our nation; to not always think about what is, but what could be, and why it would be an attractive future.

ARPA-E [a DOE program to spur energy innovations] is an interesting case of a good idea articulated by policymakers that was fairly rapidly put in place. It was authorized by Congress and then implemented by DOE, initially through Recovery Act funding, to bring a new approach to funding high-risk, high reward energy technology research within the Department of Energy. It’s been reviewed very well by industry and its sponsors in Congress. The ability to take risks and reach for the big payoffs is something that we should think about and try to implement when we can.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This