Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

By Michael Feldman

October 3, 2011

In May, chip startup Adapteva debuted Epiphany, a manycore architecture designed to maximize floating point horsepower with the lowest possible energy footprint. The initial silicon was a 16-core processor, implemented on the 65nm process node. This week, the company announced it has taped out a 64-core version of the design on the 28nm process node, delivering 100 gigaflops of performance at under 2 watts of power. 
 
The three-year old company is targeting the two extremes of the computing spectrum with their Epiphany architecture: supercomputing and mobile devices. The common denomination in both cases is an obsession to minimize power consumption, something the Adapteva designers have done extremely well.

According to Adapteva founder and CEO Andreas Olofsson, this latest silicon, officially known as Epiphany-IV (it’s the fourth generation of the architecture) runs at 800 MHz and is expected to achieve 70 single precision gigaflops/watt, twice the efficiency of their previous design. Their fab partner, GLOBALFOUNDRIES, is expected to start churning out samples of the 64-core wonder in January 2012.

As we reported in May, the RISC-based Epiphany design employs a 2D, low overhead, low latency mesh for inter-core communication, with each core containing 32KB of local memory for explicit cache control (in order to maximize data movement efficiency). Although the latest design implements 64 cores, Adapteva is projecting processors with as many as 4,096 cores per chip, delivering upwards of 4 teraflops.

While the company can’t claim a design win in either the HPC or mobile world, embedded device maker BittWare has picked up the Adapteva chip for one of its FPGA Mezzanine Cards (FMCs). That product pairs four Epiphany 16-core processors with an Altera Stratix FPGA. The sub-10 watt card delivers 128 gigaflops and is aimed at applications such as digital signal processing, defense, and communications. Although Olofsson is thrilled to get BittWare’s business, he thinks their are much larger opportunities to be had if he can find some other enterprising partners.

For example, he believes the new 64-core version, officially known as would be ideal for a tablet PC, smartphone, or an HPC board. In the latter case, Olofsson envisions an array of Epiphany chips on a board that can be plugged into an HPC server node (or a whole cluster), to offload floating-point intensive workloads. The chip array would be hooked together as an extension of the on-chip communication fabric that connects the individual cores. “You could easily fit a couple of teraflops on a board at a very reasonable power consumption,” Olofsson told HPCwire.

The CEO says his five-man company is profitable now, but they need a deep-pocketed partner or two to take to technology to the next level. In particular, Epiphany would benefit greatly from a more complete software stack — compilers, debuggers, libraries and so on — to attract developers. The current Epiphany SDK, which provides an ANSI C development environment, is fine for the development kits Adapteva is handing out, but they’ll eventually need a production toolset if they hope to become a major manycore vendor.

The competition is already rather formidable. Intel, with its Many Integrated Core (MIC) x86 processor for high performance computing, has vast resources to develop and support that architecture. MIC will inherit Intel’s parallel software portfolio, making it automatically attractive to an established audience of developers. Although not set to debut until late 2012 or early 2013, Intel’s manycore offering already has a chalked up a major win in TACC’s “Stampede” supercomputer.

The other established manycore vendor, Tilera, already has 64-core chips in the field. In this case though, the architecture is more oriented toward general-purpose processing, rather than a floating point acceleration, so is mainly being targeted to cloud computing, networking, and multimedia applications.

Although the new breed of GPGPUs from NVIDIA and AMD are also being used as floating point accelerators, Olofsson doesn’t equate those designs with Epiphany, which relies on a more conventional CPU-type of architecture. And while he thinks both CUDA and OpenCL are worthwhile execution models for parallel programming, Olofsson believes the data-parallel-centric GPU design has too many restrictions. “GPUs are the answer for graphics,” he says. “I dont think they are the answer for HPC.”
 
Adapteva, with its laser focus on floating point performance and with no allegiance to either the x86 instruction set or graphics support, is able to squeeze a lot more performance per watt out its design. For example, the 32-core MIC prototype, Knights Ferry, delivers 1200 gigaflops of peak single precision performance. Assuming a power draw of 200 watts (which is probably on the conservative side), that translates to a performance efficiency of 6 SP gigaflops/watt.

That’s a far cry from the 35 SP gigaflops/watt Adapteva has already demonstrated, and even if Intel doubles or quadruples its efficiency when it launches the production Knights Corner MIC, by that time Adapteva should already have its 70 gigaflops/watt chips in the field. Even the upcoming Kepler GPU from NVIDIA is expected to deliver only about 10 SP gigaflops/watt.

If Adapteva’s story of a proprietary floating point accelerator sounds like a remake of the ClearSpeed story, that’s not quite the case. Olofsson maintains they are only in the semiconductor design business, with has no aspirations to churn out production processors, boards, and systems, like ClearSpeed tried to do. According to him, the idea is to entice other chip and board makers to license the technology, the same way ARM Holdings does for its microprocessor IP.

Speaking of which: ARM processor and device vendors could be ideal companions for Adapteva, given ARM’s penetration into the mobile space. In fact, Olofsson admits there is a tier 1 semiconductor vendor who is evaluating the Epiphany technology right now, and it’s a fair bet that the company is already an ARM licensee. The idea would be to either integrated the Epiphany design on-chip next to ARM cores, or just pair Epiphany chips with ARM processors on a card.

Perhaps a more interesting scenario is for AMD to license Epiphany (or even acquire the company outright). Even though AMD  is using its GPGPU technology to target HPC and their mobile ambitions, Epiphany would give them a cutting-edge accelerator technology to go head-to-head with Intel’s MIC architecture. It would also enable AMD to develop some rather unique mobile processor silicon to pair with their low-power x86 CPU designs.

In the short-term, one of Olofsson’s dreams is to get someone to build an Epiphany-equipped computer that can run Linpack (presumably, with a double precision floating point implementation of Epiphany) to get a Green500 ranking. The current champ is an IBM Blue Gene/Q prototype machine, which is based on a PowerPC A2 SoC that delivers about 3.7 gigaflops/watt (which, by the way is about what ClearSpeed’s ASIC was delivering in 2008 before the company unraveled). With its 10-fold performance per watt advantage, Olofsson thinks an Epiphany-based system could easily capture the number one spot on the Green500 list.

Although Adapteva has taken a somewhat unconventional approach with its manycore chips, Olofsson says their design will scale much better than legacy CPU architectures, like the x86, and will be much more efficient at extracting floating point performance than generalized graphics processors. And even though he’s battling much larger and wealthier semiconductor vendors, Olofsson likes his chances. “Multicore and manycore is the future of computing,” he says, “and we feel like we’re right in the middle of it.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This