Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

By Michael Feldman

October 3, 2011

In May, chip startup Adapteva debuted Epiphany, a manycore architecture designed to maximize floating point horsepower with the lowest possible energy footprint. The initial silicon was a 16-core processor, implemented on the 65nm process node. This week, the company announced it has taped out a 64-core version of the design on the 28nm process node, delivering 100 gigaflops of performance at under 2 watts of power. 
The three-year old company is targeting the two extremes of the computing spectrum with their Epiphany architecture: supercomputing and mobile devices. The common denomination in both cases is an obsession to minimize power consumption, something the Adapteva designers have done extremely well.

According to Adapteva founder and CEO Andreas Olofsson, this latest silicon, officially known as Epiphany-IV (it’s the fourth generation of the architecture) runs at 800 MHz and is expected to achieve 70 single precision gigaflops/watt, twice the efficiency of their previous design. Their fab partner, GLOBALFOUNDRIES, is expected to start churning out samples of the 64-core wonder in January 2012.

As we reported in May, the RISC-based Epiphany design employs a 2D, low overhead, low latency mesh for inter-core communication, with each core containing 32KB of local memory for explicit cache control (in order to maximize data movement efficiency). Although the latest design implements 64 cores, Adapteva is projecting processors with as many as 4,096 cores per chip, delivering upwards of 4 teraflops.

While the company can’t claim a design win in either the HPC or mobile world, embedded device maker BittWare has picked up the Adapteva chip for one of its FPGA Mezzanine Cards (FMCs). That product pairs four Epiphany 16-core processors with an Altera Stratix FPGA. The sub-10 watt card delivers 128 gigaflops and is aimed at applications such as digital signal processing, defense, and communications. Although Olofsson is thrilled to get BittWare’s business, he thinks their are much larger opportunities to be had if he can find some other enterprising partners.

For example, he believes the new 64-core version, officially known as would be ideal for a tablet PC, smartphone, or an HPC board. In the latter case, Olofsson envisions an array of Epiphany chips on a board that can be plugged into an HPC server node (or a whole cluster), to offload floating-point intensive workloads. The chip array would be hooked together as an extension of the on-chip communication fabric that connects the individual cores. “You could easily fit a couple of teraflops on a board at a very reasonable power consumption,” Olofsson told HPCwire.

The CEO says his five-man company is profitable now, but they need a deep-pocketed partner or two to take to technology to the next level. In particular, Epiphany would benefit greatly from a more complete software stack — compilers, debuggers, libraries and so on — to attract developers. The current Epiphany SDK, which provides an ANSI C development environment, is fine for the development kits Adapteva is handing out, but they’ll eventually need a production toolset if they hope to become a major manycore vendor.

The competition is already rather formidable. Intel, with its Many Integrated Core (MIC) x86 processor for high performance computing, has vast resources to develop and support that architecture. MIC will inherit Intel’s parallel software portfolio, making it automatically attractive to an established audience of developers. Although not set to debut until late 2012 or early 2013, Intel’s manycore offering already has a chalked up a major win in TACC’s “Stampede” supercomputer.

The other established manycore vendor, Tilera, already has 64-core chips in the field. In this case though, the architecture is more oriented toward general-purpose processing, rather than a floating point acceleration, so is mainly being targeted to cloud computing, networking, and multimedia applications.

Although the new breed of GPGPUs from NVIDIA and AMD are also being used as floating point accelerators, Olofsson doesn’t equate those designs with Epiphany, which relies on a more conventional CPU-type of architecture. And while he thinks both CUDA and OpenCL are worthwhile execution models for parallel programming, Olofsson believes the data-parallel-centric GPU design has too many restrictions. “GPUs are the answer for graphics,” he says. “I dont think they are the answer for HPC.”
Adapteva, with its laser focus on floating point performance and with no allegiance to either the x86 instruction set or graphics support, is able to squeeze a lot more performance per watt out its design. For example, the 32-core MIC prototype, Knights Ferry, delivers 1200 gigaflops of peak single precision performance. Assuming a power draw of 200 watts (which is probably on the conservative side), that translates to a performance efficiency of 6 SP gigaflops/watt.

That’s a far cry from the 35 SP gigaflops/watt Adapteva has already demonstrated, and even if Intel doubles or quadruples its efficiency when it launches the production Knights Corner MIC, by that time Adapteva should already have its 70 gigaflops/watt chips in the field. Even the upcoming Kepler GPU from NVIDIA is expected to deliver only about 10 SP gigaflops/watt.

If Adapteva’s story of a proprietary floating point accelerator sounds like a remake of the ClearSpeed story, that’s not quite the case. Olofsson maintains they are only in the semiconductor design business, with has no aspirations to churn out production processors, boards, and systems, like ClearSpeed tried to do. According to him, the idea is to entice other chip and board makers to license the technology, the same way ARM Holdings does for its microprocessor IP.

Speaking of which: ARM processor and device vendors could be ideal companions for Adapteva, given ARM’s penetration into the mobile space. In fact, Olofsson admits there is a tier 1 semiconductor vendor who is evaluating the Epiphany technology right now, and it’s a fair bet that the company is already an ARM licensee. The idea would be to either integrated the Epiphany design on-chip next to ARM cores, or just pair Epiphany chips with ARM processors on a card.

Perhaps a more interesting scenario is for AMD to license Epiphany (or even acquire the company outright). Even though AMD  is using its GPGPU technology to target HPC and their mobile ambitions, Epiphany would give them a cutting-edge accelerator technology to go head-to-head with Intel’s MIC architecture. It would also enable AMD to develop some rather unique mobile processor silicon to pair with their low-power x86 CPU designs.

In the short-term, one of Olofsson’s dreams is to get someone to build an Epiphany-equipped computer that can run Linpack (presumably, with a double precision floating point implementation of Epiphany) to get a Green500 ranking. The current champ is an IBM Blue Gene/Q prototype machine, which is based on a PowerPC A2 SoC that delivers about 3.7 gigaflops/watt (which, by the way is about what ClearSpeed’s ASIC was delivering in 2008 before the company unraveled). With its 10-fold performance per watt advantage, Olofsson thinks an Epiphany-based system could easily capture the number one spot on the Green500 list.

Although Adapteva has taken a somewhat unconventional approach with its manycore chips, Olofsson says their design will scale much better than legacy CPU architectures, like the x86, and will be much more efficient at extracting floating point performance than generalized graphics processors. And even though he’s battling much larger and wealthier semiconductor vendors, Olofsson likes his chances. “Multicore and manycore is the future of computing,” he says, “and we feel like we’re right in the middle of it.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

12 Midwestern Universities Team to Boost Semiconductor Supply Chain

August 8, 2022

The combined stressors of Covid-19 and the invasion of Ukraine have sent every major nation scrambling to reinforce its mission-critical supply chains — including and in particular the semiconductor supply chain. In th Read more…

Quantum Pioneer D-Wave Rings NYSE Bell, Begins Life as Public Company

August 8, 2022

D-Wave Systems, one of the early quantum computing pioneers, has completed its SPAC deal to go public. Its merger with DPCM Capital was completed last Friday, and today, D-Wave management rang the bell on the New York St Read more…

Supercomputer Models Explosives Critical for Nuclear Weapons

August 6, 2022

Lawrence Livermore National Laboratory (LLNL) is one of the laboratories that operates under the auspices of the National Nuclear Security Administration (NNSA), which manages the United States’ stockpile of nuclear we Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

HPC Career Notes: August 2022 Edition

August 5, 2022

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

AWS Solution Channel

Shutterstock 1590905653

Expanded filesystems support in AWS ParallelCluster 3.2

Data is critical to HPC, and ensuring your simulations have the data they need — when they need it — is essential. However, data can originate from many sources and need to be consumed by diverse resources. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 1731567844

Using Cloud-Based, GPU-Accelerated Systems for AML Fraud Detection

A major issue facing financial services organizations is tracking fraud due to money laundering. Trying to track money laundering is an expensive and time-consuming process due to the large volumes of financial data which must be analyzed. Read more…

Sniff Test: Supercomputer Research Investigates Odor Neutralizers

August 4, 2022

Factories, farms and landfills are functionally essential to our daily lives, but the less-than-desirable smells they often produce may be somewhat less necessary. Researchers from the University of New Orleans, the Louisiana Department of Environmental Quality, and the Jefferson Parish Department of Environmental Affairs in Jefferson, Louisiana... Read more…

SEA Changes: How EuroHPC Is Preparing for Exascale

August 5, 2022

Back in June, the EuroHPC Joint Undertaking — which serves as the EU’s concerted supercomputing play — announced its first exascale system: JUPITER, set to be installed by the Jülich Supercomputing Centre (FZJ) in 2023. But EuroHPC has been preparing for the exascale era for a much longer time: eight months before... Read more…

Not Just Cash for Chips – The New Chips and Science Act Boosts NSF, DOE, NIST

August 3, 2022

After two-plus years of contentious debate, several different names, and final passage by the House (243-187) and Senate (64-33) last week, the Chips and Science Act will soon become law. Besides the $54.2 billion provided to boost US-based chip manufacturing, the act reshapes US science policy in meaningful ways. NSF’s proposed budget... Read more…

CXL Brings Datacenter-sized Computing with 3.0 Standard, Thinks Ahead to 4.0

August 2, 2022

A new version of a standard backed by major cloud providers and chip companies could change the way some of the world's largest datacenters and fastest supercomputers are built. The CXL Consortium on Tuesday announced a new specification called CXL 3.0 – also known as Compute Express Link 3.0... Read more…

Inside an Ambitious Play to Shake Up HPC and the Texas Grid

August 2, 2022

With HPC demand ballooning and Moore’s law slowing down, modern supercomputers often undergo exhaustive efficiency efforts aimed at ameliorating exorbitant energy bills and correspondingly large carbon footprints. Others, meanwhile, are asking: is min-maxing the best option, or are there easier paths to reducing the bills and emissions of... Read more…

UCIe Consortium Incorporates, Nvidia and Alibaba Round Out Board

August 2, 2022

The Universal Chiplet Interconnect Express (UCIe) consortium is moving ahead with its effort to standardize a universal interconnect at the package level. The c Read more…

OpenCAPI to Be Folded into CXL

August 1, 2022

As the need for speed drives computational workloads, more standards organizations are coalescing around a standard called Compute Express Link – also known a Read more…

US CHIPS Act Close to Being Signed into Law

July 28, 2022

The U.S. House today passed the CHIPS and Science Act of 2022, which authorizes $280 billion in funding to boost semiconductor research and production in the country. The passage of the bill paves the way for U.S. president Joe Biden to sign the legislation into law, which would officially open up funding... Read more…

GE Research Enters the Exascale Era

July 28, 2022

The pitch for GE Research is easy, as Richard Arthur, senior director of computational methods research for GE Research, explained at the latest meeting of the DOE’s Advanced Scientific Computing Advisory Committee (ASCAC): a third of the electrons in the world that flow through devices are generated on GE equipment; every two seconds... Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

US Senate Passes CHIPS Act Temperature Check, but Challenges Linger

July 19, 2022

The U.S. Senate on Tuesday passed a major hurdle that will open up close to $52 billion in grants for the semiconductor industry to boost manufacturing, supply chain and research and development. U.S. senators voted 64-34 in favor of advancing the CHIPS Act, which sets the stage for the final consideration... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers


ISC 2022 Booth Video Tours


Exclusive Inside Look at First US Exascale Supercomputer

July 1, 2022

HPCwire takes you inside the Frontier datacenter at DOE's Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tenn., for an interview with Frontier Project Direc Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

AMD Lines Up Alternate Chips as It Eyes a ‘Post-exaflops’ Future

June 10, 2022

Close to a decade ago, AMD was in turmoil. The company was playing second fiddle to Intel in PCs and datacenters, and its road to profitability hinged mostly on Read more…

Exascale Watch: Aurora Installation Underway, Now Open for Reservations

May 10, 2022

Installation has begun on the Aurora supercomputer, Rick Stevens (associate director of Argonne National Laboratory) revealed today during the Intel Vision event keynote taking place in Dallas, Texas, and online. Joining Intel exec Raja Koduri on stage, Stevens confirmed that the Aurora build is underway – a major development for a system that is projected to deliver more... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow