Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

By Michael Feldman

October 3, 2011

In May, chip startup Adapteva debuted Epiphany, a manycore architecture designed to maximize floating point horsepower with the lowest possible energy footprint. The initial silicon was a 16-core processor, implemented on the 65nm process node. This week, the company announced it has taped out a 64-core version of the design on the 28nm process node, delivering 100 gigaflops of performance at under 2 watts of power. 
 
The three-year old company is targeting the two extremes of the computing spectrum with their Epiphany architecture: supercomputing and mobile devices. The common denomination in both cases is an obsession to minimize power consumption, something the Adapteva designers have done extremely well.

According to Adapteva founder and CEO Andreas Olofsson, this latest silicon, officially known as Epiphany-IV (it’s the fourth generation of the architecture) runs at 800 MHz and is expected to achieve 70 single precision gigaflops/watt, twice the efficiency of their previous design. Their fab partner, GLOBALFOUNDRIES, is expected to start churning out samples of the 64-core wonder in January 2012.

As we reported in May, the RISC-based Epiphany design employs a 2D, low overhead, low latency mesh for inter-core communication, with each core containing 32KB of local memory for explicit cache control (in order to maximize data movement efficiency). Although the latest design implements 64 cores, Adapteva is projecting processors with as many as 4,096 cores per chip, delivering upwards of 4 teraflops.

While the company can’t claim a design win in either the HPC or mobile world, embedded device maker BittWare has picked up the Adapteva chip for one of its FPGA Mezzanine Cards (FMCs). That product pairs four Epiphany 16-core processors with an Altera Stratix FPGA. The sub-10 watt card delivers 128 gigaflops and is aimed at applications such as digital signal processing, defense, and communications. Although Olofsson is thrilled to get BittWare’s business, he thinks their are much larger opportunities to be had if he can find some other enterprising partners.

For example, he believes the new 64-core version, officially known as would be ideal for a tablet PC, smartphone, or an HPC board. In the latter case, Olofsson envisions an array of Epiphany chips on a board that can be plugged into an HPC server node (or a whole cluster), to offload floating-point intensive workloads. The chip array would be hooked together as an extension of the on-chip communication fabric that connects the individual cores. “You could easily fit a couple of teraflops on a board at a very reasonable power consumption,” Olofsson told HPCwire.

The CEO says his five-man company is profitable now, but they need a deep-pocketed partner or two to take to technology to the next level. In particular, Epiphany would benefit greatly from a more complete software stack — compilers, debuggers, libraries and so on — to attract developers. The current Epiphany SDK, which provides an ANSI C development environment, is fine for the development kits Adapteva is handing out, but they’ll eventually need a production toolset if they hope to become a major manycore vendor.

The competition is already rather formidable. Intel, with its Many Integrated Core (MIC) x86 processor for high performance computing, has vast resources to develop and support that architecture. MIC will inherit Intel’s parallel software portfolio, making it automatically attractive to an established audience of developers. Although not set to debut until late 2012 or early 2013, Intel’s manycore offering already has a chalked up a major win in TACC’s “Stampede” supercomputer.

The other established manycore vendor, Tilera, already has 64-core chips in the field. In this case though, the architecture is more oriented toward general-purpose processing, rather than a floating point acceleration, so is mainly being targeted to cloud computing, networking, and multimedia applications.

Although the new breed of GPGPUs from NVIDIA and AMD are also being used as floating point accelerators, Olofsson doesn’t equate those designs with Epiphany, which relies on a more conventional CPU-type of architecture. And while he thinks both CUDA and OpenCL are worthwhile execution models for parallel programming, Olofsson believes the data-parallel-centric GPU design has too many restrictions. “GPUs are the answer for graphics,” he says. “I dont think they are the answer for HPC.”
 
Adapteva, with its laser focus on floating point performance and with no allegiance to either the x86 instruction set or graphics support, is able to squeeze a lot more performance per watt out its design. For example, the 32-core MIC prototype, Knights Ferry, delivers 1200 gigaflops of peak single precision performance. Assuming a power draw of 200 watts (which is probably on the conservative side), that translates to a performance efficiency of 6 SP gigaflops/watt.

That’s a far cry from the 35 SP gigaflops/watt Adapteva has already demonstrated, and even if Intel doubles or quadruples its efficiency when it launches the production Knights Corner MIC, by that time Adapteva should already have its 70 gigaflops/watt chips in the field. Even the upcoming Kepler GPU from NVIDIA is expected to deliver only about 10 SP gigaflops/watt.

If Adapteva’s story of a proprietary floating point accelerator sounds like a remake of the ClearSpeed story, that’s not quite the case. Olofsson maintains they are only in the semiconductor design business, with has no aspirations to churn out production processors, boards, and systems, like ClearSpeed tried to do. According to him, the idea is to entice other chip and board makers to license the technology, the same way ARM Holdings does for its microprocessor IP.

Speaking of which: ARM processor and device vendors could be ideal companions for Adapteva, given ARM’s penetration into the mobile space. In fact, Olofsson admits there is a tier 1 semiconductor vendor who is evaluating the Epiphany technology right now, and it’s a fair bet that the company is already an ARM licensee. The idea would be to either integrated the Epiphany design on-chip next to ARM cores, or just pair Epiphany chips with ARM processors on a card.

Perhaps a more interesting scenario is for AMD to license Epiphany (or even acquire the company outright). Even though AMD  is using its GPGPU technology to target HPC and their mobile ambitions, Epiphany would give them a cutting-edge accelerator technology to go head-to-head with Intel’s MIC architecture. It would also enable AMD to develop some rather unique mobile processor silicon to pair with their low-power x86 CPU designs.

In the short-term, one of Olofsson’s dreams is to get someone to build an Epiphany-equipped computer that can run Linpack (presumably, with a double precision floating point implementation of Epiphany) to get a Green500 ranking. The current champ is an IBM Blue Gene/Q prototype machine, which is based on a PowerPC A2 SoC that delivers about 3.7 gigaflops/watt (which, by the way is about what ClearSpeed’s ASIC was delivering in 2008 before the company unraveled). With its 10-fold performance per watt advantage, Olofsson thinks an Epiphany-based system could easily capture the number one spot on the Green500 list.

Although Adapteva has taken a somewhat unconventional approach with its manycore chips, Olofsson says their design will scale much better than legacy CPU architectures, like the x86, and will be much more efficient at extracting floating point performance than generalized graphics processors. And even though he’s battling much larger and wealthier semiconductor vendors, Olofsson likes his chances. “Multicore and manycore is the future of computing,” he says, “and we feel like we’re right in the middle of it.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This