Adapteva Builds Manycore Processor That Will Deliver 70 Gigaflops/Watt

By Michael Feldman

October 3, 2011

In May, chip startup Adapteva debuted Epiphany, a manycore architecture designed to maximize floating point horsepower with the lowest possible energy footprint. The initial silicon was a 16-core processor, implemented on the 65nm process node. This week, the company announced it has taped out a 64-core version of the design on the 28nm process node, delivering 100 gigaflops of performance at under 2 watts of power. 
 
The three-year old company is targeting the two extremes of the computing spectrum with their Epiphany architecture: supercomputing and mobile devices. The common denomination in both cases is an obsession to minimize power consumption, something the Adapteva designers have done extremely well.

According to Adapteva founder and CEO Andreas Olofsson, this latest silicon, officially known as Epiphany-IV (it’s the fourth generation of the architecture) runs at 800 MHz and is expected to achieve 70 single precision gigaflops/watt, twice the efficiency of their previous design. Their fab partner, GLOBALFOUNDRIES, is expected to start churning out samples of the 64-core wonder in January 2012.

As we reported in May, the RISC-based Epiphany design employs a 2D, low overhead, low latency mesh for inter-core communication, with each core containing 32KB of local memory for explicit cache control (in order to maximize data movement efficiency). Although the latest design implements 64 cores, Adapteva is projecting processors with as many as 4,096 cores per chip, delivering upwards of 4 teraflops.

While the company can’t claim a design win in either the HPC or mobile world, embedded device maker BittWare has picked up the Adapteva chip for one of its FPGA Mezzanine Cards (FMCs). That product pairs four Epiphany 16-core processors with an Altera Stratix FPGA. The sub-10 watt card delivers 128 gigaflops and is aimed at applications such as digital signal processing, defense, and communications. Although Olofsson is thrilled to get BittWare’s business, he thinks their are much larger opportunities to be had if he can find some other enterprising partners.

For example, he believes the new 64-core version, officially known as would be ideal for a tablet PC, smartphone, or an HPC board. In the latter case, Olofsson envisions an array of Epiphany chips on a board that can be plugged into an HPC server node (or a whole cluster), to offload floating-point intensive workloads. The chip array would be hooked together as an extension of the on-chip communication fabric that connects the individual cores. “You could easily fit a couple of teraflops on a board at a very reasonable power consumption,” Olofsson told HPCwire.

The CEO says his five-man company is profitable now, but they need a deep-pocketed partner or two to take to technology to the next level. In particular, Epiphany would benefit greatly from a more complete software stack — compilers, debuggers, libraries and so on — to attract developers. The current Epiphany SDK, which provides an ANSI C development environment, is fine for the development kits Adapteva is handing out, but they’ll eventually need a production toolset if they hope to become a major manycore vendor.

The competition is already rather formidable. Intel, with its Many Integrated Core (MIC) x86 processor for high performance computing, has vast resources to develop and support that architecture. MIC will inherit Intel’s parallel software portfolio, making it automatically attractive to an established audience of developers. Although not set to debut until late 2012 or early 2013, Intel’s manycore offering already has a chalked up a major win in TACC’s “Stampede” supercomputer.

The other established manycore vendor, Tilera, already has 64-core chips in the field. In this case though, the architecture is more oriented toward general-purpose processing, rather than a floating point acceleration, so is mainly being targeted to cloud computing, networking, and multimedia applications.

Although the new breed of GPGPUs from NVIDIA and AMD are also being used as floating point accelerators, Olofsson doesn’t equate those designs with Epiphany, which relies on a more conventional CPU-type of architecture. And while he thinks both CUDA and OpenCL are worthwhile execution models for parallel programming, Olofsson believes the data-parallel-centric GPU design has too many restrictions. “GPUs are the answer for graphics,” he says. “I dont think they are the answer for HPC.”
 
Adapteva, with its laser focus on floating point performance and with no allegiance to either the x86 instruction set or graphics support, is able to squeeze a lot more performance per watt out its design. For example, the 32-core MIC prototype, Knights Ferry, delivers 1200 gigaflops of peak single precision performance. Assuming a power draw of 200 watts (which is probably on the conservative side), that translates to a performance efficiency of 6 SP gigaflops/watt.

That’s a far cry from the 35 SP gigaflops/watt Adapteva has already demonstrated, and even if Intel doubles or quadruples its efficiency when it launches the production Knights Corner MIC, by that time Adapteva should already have its 70 gigaflops/watt chips in the field. Even the upcoming Kepler GPU from NVIDIA is expected to deliver only about 10 SP gigaflops/watt.

If Adapteva’s story of a proprietary floating point accelerator sounds like a remake of the ClearSpeed story, that’s not quite the case. Olofsson maintains they are only in the semiconductor design business, with has no aspirations to churn out production processors, boards, and systems, like ClearSpeed tried to do. According to him, the idea is to entice other chip and board makers to license the technology, the same way ARM Holdings does for its microprocessor IP.

Speaking of which: ARM processor and device vendors could be ideal companions for Adapteva, given ARM’s penetration into the mobile space. In fact, Olofsson admits there is a tier 1 semiconductor vendor who is evaluating the Epiphany technology right now, and it’s a fair bet that the company is already an ARM licensee. The idea would be to either integrated the Epiphany design on-chip next to ARM cores, or just pair Epiphany chips with ARM processors on a card.

Perhaps a more interesting scenario is for AMD to license Epiphany (or even acquire the company outright). Even though AMD  is using its GPGPU technology to target HPC and their mobile ambitions, Epiphany would give them a cutting-edge accelerator technology to go head-to-head with Intel’s MIC architecture. It would also enable AMD to develop some rather unique mobile processor silicon to pair with their low-power x86 CPU designs.

In the short-term, one of Olofsson’s dreams is to get someone to build an Epiphany-equipped computer that can run Linpack (presumably, with a double precision floating point implementation of Epiphany) to get a Green500 ranking. The current champ is an IBM Blue Gene/Q prototype machine, which is based on a PowerPC A2 SoC that delivers about 3.7 gigaflops/watt (which, by the way is about what ClearSpeed’s ASIC was delivering in 2008 before the company unraveled). With its 10-fold performance per watt advantage, Olofsson thinks an Epiphany-based system could easily capture the number one spot on the Green500 list.

Although Adapteva has taken a somewhat unconventional approach with its manycore chips, Olofsson says their design will scale much better than legacy CPU architectures, like the x86, and will be much more efficient at extracting floating point performance than generalized graphics processors. And even though he’s battling much larger and wealthier semiconductor vendors, Olofsson likes his chances. “Multicore and manycore is the future of computing,” he says, “and we feel like we’re right in the middle of it.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This