IEEE Conference Keynoters Lay Out Path to Exascale Computing

By Aaron Dubrow

October 5, 2011

The challenges of exascale computing were the main focus of the three keynote addresses at the IEEE Cluster 2011 conference hosted in Austin, Texas from September 26 through 30. The speakers, renowned leaders in cluster computing, described the obstacles and opportunities involved in building systems one thousand times more powerful than today’s petascale supercomputers. Speaking from the perspective of the software developer (Thomas Sterling), the cluster designer (Liu GuangMing) and the chip architect (Charles Moore), each presented their thoughts on what is needed to reach exascale.

Thomas Sterling, Indiana University, Center for Research in Extreme Scale Technologies (CREST)

With a confidence born from long experience, Thomas Sterling, father of Beowulf, industry veteran, and associate director of the Center for Research in Extreme Scale Technologies (CREST) at Indiana University, kicked off the conference on Tuesday with a keynote on the need for a new paradigm in programming that will be adaptive, intelligent, asynchronous and able to get significantly better performance than today’s execution model.

Before jumping into an explanation of the new programming model, Sterling presented an eccentric history of cluster computing from the MIT Whirlwind project in the 1950s to Norbert Weiner’s cybernetic systems through the Beowulf era, where commodity PCs were first harnessed together to build a powerful cluster, to today’s petaflop mega-machines, one million times faster than the first Beowulf cluster.

Throughout the various phases of supercomputing innovation, several different programming paradigms have emerged, Sterling explained, from serial execution to vector processing to SIMD, to today’s dominant model, which uses MPI (Message Passing Interface) to communicate among many cores.

“Clusters will go through another metamorphosis,” Sterling predicted, adding, “commodity clusters will survive paradigm shifts.”

Current trends suggest the trajectory for computing speed is leveling. Sterling identified a number of problems that may prevent technologists from developing large systems. Power and reliability will be challenging, but Sterling sees the programming model as the biggest obstacle.

In the synchronous model represented by MPI, calculations need to be performed in a specific order, and with precision, to minimize latency, a dance that is difficult to keep up with. Only a handful of codes can run on the hundreds of thousands of cores that are available on today’s large supercomputers. Exascale computers, which Sterling said he hopes to see by the end of the decade, will likely have millions of cores.  At this level of core count, the component reliability and synchronization costs cannot accommodate the usual data-parallel computing approach.

“We must manage asynchrony to allow computing to be self-adaptive,” he said.

As an analogy, he pointed to the difference between a guided missile and a cannon. MPI represents an uncontrolled, ballistic, brute force method to solve problems. The new paradigm, or “experimental execution model” presented by Sterling, is exemplified by his own project, the ParalleX Research Group.

“ParalleX is an abstract test bed to explore the synthesis of ideas for current and extreme scale applications,” Sterling said. “We want to bring strong scaled applications back into the cluster world.”

His software employs micro-checkpointing: ephemeral detection and correction on the fly, and introspection (a kind of machine learning) closing the loop, as in cybernetics, to constantly adjust like the guided missile. It also manages asynchrony by “constraint-based synchronization.”

“You don’t want to tell the program when to do the tasks,” Sterling said. “You want to tell the program the conditions under which the task can be done. This allows the program to decide on its own when to undertake a given task.”

He pointed to initial performance gains for porting the adaptive mesh refinement algorithm for astrophysics to work on ParalleX execution. Results showed an improvement in performance of two to three times by changing the underlying context from MPI to ParalleX.

Some of these same goals are being pursued in a few significant, but not particularly well-known programming experiments, according to Sterling. In addition to ParalleX, he discussed examples from the StarsS project at the Barcelona Supercomputing Center, which employ a new model for data flow executions, and the SWift Adaptive Runtime Machine (SWARM) by ET International.

These execution models may not yet provide optimal computing, Sterling admitted, but the solutions being developed are needed for the community to advance.

“Cluster computing is going through a phase transition,” he asserted. “It will take leadership in this new paradigm shift and it will be the medium where a new paradigm is manifested. “

The tools are open source and XPI, the API for the execution environment, is in alpha testing and available to friendly users. It will be released soon to the general public.

Liu GuangMing, Director, National Supercomputer Center, Tianjin, China

Liu GuangMing, the designer of Tianhe-1A — China’s most powerful supercomputer and the second most powerful in the world — began his Wednesday keynote with an overview of the system deployed at the National Supercomputer Center in Tianjin, China.  He followed with an analysis of the barriers that designers face in building an exascale system.

Built from 143,336 Intel CPU processors, 7168 NVIDIA GPUs, and 2048 Galaxy FT-1000 eight-core processors designed by Liu himself, Tianhe-1A has a peak performance of 2.56 petaflops. The hybrid cluster is comprised largely of commodity parts; however, a few of the components, including the interconnects and FT chips, are proprietary.

“To get to the petascale, you can choose a traditional design or a new design,” Liu said. “We have been looking for a new way to design and implement a petaflop supercomputer.”

When it was deployed in 2010, many in the HPC world questioned Tianhe-1A’s ability to run scientific applications efficiently. Liu described a broad range of problems that used thousands to hundreds of thousands of processors with great efficiency, from seismic imaging for petroleum exploration to decoding the genome of the E. coli bacteria that sickened thousands in Germany. These results were delivered and put to bed some of the questions about Tianhe-1A’s usability.

After describing the technological and scientific successes of Tianhe-1A, Liu transitioned to a discussion of the problems associated with future exascale systems. He divided the problems into five categories: power, memory, communication, reliability, and application scalability, and quantified each problem with mathematical models.

Literally.

Transforming each of the main challenges into equations, he described how the models depict the obstacles facing continued speedups. The goal of this endeavor was to “build a synthesized speedup model and define quantitatively the ‘walls’,” Liu said.

He went on to suggest potential ways over each wall, sometimes through concerted effort by the HPC community, sometimes through emerging innovations.

Liu also showed enthusiasm for untested, emerging technologies such as optical or wireless interconnects, nanoelectronics and quantum and DNA computing, all of which he expects to play a role in the evolution of new systems. He pointed to the high-speed 3D interconnects associated with the Cray XT5 and Fujitsu K computer systems as examples of current technologies that he believes are on the right path to reaching the exascale.

Liu also gave examples of instances where the community must do a better job of optimizing applications for larger systems. Speaking about computer memory, he classified six types of data access that must be considered when speeding-up and scaling-up applications to tens of thousands of cores.

“Traditional optimization techniques usually consider only some of these characteristics,” Liu said. “We must consider all six characteristics and create a harmonious optimization algorithm.”

This holistic, deep thinking about the interrelationship of various levels of computation were the main message of Liu’s presentation. He repeatedly returned to graphs that showed the impact of various processes, from memory access and communication, to power consumption and cost, on the overall time and efficiency of computation.

“To reach the exascale, we must research solutions at all system levels,” Liu concluded.

Charles Moore, Corporate Fellow and the Technology Group CTO, Advanced Micro Devices

Reaching exascale was the subtext of Charles Moore’s Thursday keynote at IEEE Cluster 2011, but AMD’s emerging line of accelerated processing units (APUs) was the real subject of his talk.

APUs are a class of chip that Moore believes will power future exascale systems. According to Moore, exascale systems will achieve their massive speedup by using both CPUs and GPUs or other accelerators.

“We are approaching what we at AMD call the heterogeneous systems era,” Moore said. That alone is not groundbreaking; what is important is the fact but for AMD, these cores will all be located on the same chip.

Among the chips discussed by Moore were the “Brazos” E-series Fusion APU, which contains dual cores, dual GPUs, and a video accelerator on a single chip. It achieves 90 gigaflops of single-precision performance using just 18W TDP. “Desna,” Brazos’ little cousin, runs on only 6W, and is suitable for passively cooled designs like tablets. “Llano,” AMD’s higher-end chip, will have four CPU cores, advanced GPUs, and will offer 500 gigaflops of compute power per node.

One advantage of AMD’s new line is that you “can use this chip for graphics or as a compute offload or both at the same time,” Moore said.

The powerful chips that Moore prophesied won’t quite take us to the exascale, but they will get us most of the way, he said. For exascale, an overhaul of the memory architecture and programming models is needed.

Moore alluded to 3D stacked memory being developed by AMD as a possible technological solution to memory access problems. He also described the new AMD Fusion system architecture, where the goal is “making the GPU a first class citizen in the system architecture.”

The Fusion system architecture itself is “agnostic for CPU and GPU.”  “We’ll add other accelerators to this frame in the future,” Moore said. “It’s not just about GPUs, it’s about heterogeneous computing in general.”

Openness was a common theme in the last part of Moore’s talk where he described AMD’s long-standing dedication to open source software and standards. He discussed emerging standards including HyperShare, the Open Compute Project, and the Common Communication Interface, which he believes will play key roles in getting to exascale.

“Open standards are the basis for large ecosystems,” he said. “If you look over time, open standards always win.”

Looking beyond the next-generation of chips, Moore described the potential for an “awesome exascale-class” 10-teraflop x86 APU computing node feasible in the 2018 timeframe.

“We intend to make the unprecedented processing capability of the APU as accessible to programmers as the CPU is today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

China’s Expanding Effort to Win in Microchips

July 27, 2017

The global battle for preeminence, or at least national independence, in semiconductor technology and manufacturing continues to heat up with Europe, China, Japan, and the U.S. all vying for sway. A fascinating article ( Read more…

By John Russell

Hyperion: Storage to Lead HPC Growth in 2016-2021

July 27, 2017

Global HPC external storage revenues will grow 7.8% over the 2016-2021 timeframe according to an updated forecast released by Hyperion Research this week. HPC server sales, by comparison, will grow a modest 5.8% to $14.8 Read more…

By John Russell

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Regular order is the established process whereby an Administrat Read more…

By Alex R. Larzelere

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore (~$675 million) supercomputing project, approved by the Ind Read more…

By Tiffany Trader

Exascale FY18 Budget – The Senate Provides Their Input

July 27, 2017

In the federal budgeting world, “regular order” is a meaningful term that is fondly remembered by members of both the Congress and the Executive Branch. Reg Read more…

By Alex R. Larzelere

India Plots Three-Phase Indigenous Supercomputing Strategy

July 26, 2017

Additional details on India's plans to stand up an indigenous supercomputer came to light earlier this week. As reported in the Indian press, the Rs 4,500-crore Read more…

By Tiffany Trader

Tuning InfiniBand Interconnects Using Congestion Control

July 26, 2017

InfiniBand is among the most common and well-known cluster interconnect technologies. However, the complexities of an InfiniBand (IB) network can frustrate the Read more…

By Adam Dorsey

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This