IEEE Conference Keynoters Lay Out Path to Exascale Computing

By Aaron Dubrow

October 5, 2011

The challenges of exascale computing were the main focus of the three keynote addresses at the IEEE Cluster 2011 conference hosted in Austin, Texas from September 26 through 30. The speakers, renowned leaders in cluster computing, described the obstacles and opportunities involved in building systems one thousand times more powerful than today’s petascale supercomputers. Speaking from the perspective of the software developer (Thomas Sterling), the cluster designer (Liu GuangMing) and the chip architect (Charles Moore), each presented their thoughts on what is needed to reach exascale.

Thomas Sterling, Indiana University, Center for Research in Extreme Scale Technologies (CREST)

With a confidence born from long experience, Thomas Sterling, father of Beowulf, industry veteran, and associate director of the Center for Research in Extreme Scale Technologies (CREST) at Indiana University, kicked off the conference on Tuesday with a keynote on the need for a new paradigm in programming that will be adaptive, intelligent, asynchronous and able to get significantly better performance than today’s execution model.

Before jumping into an explanation of the new programming model, Sterling presented an eccentric history of cluster computing from the MIT Whirlwind project in the 1950s to Norbert Weiner’s cybernetic systems through the Beowulf era, where commodity PCs were first harnessed together to build a powerful cluster, to today’s petaflop mega-machines, one million times faster than the first Beowulf cluster.

Throughout the various phases of supercomputing innovation, several different programming paradigms have emerged, Sterling explained, from serial execution to vector processing to SIMD, to today’s dominant model, which uses MPI (Message Passing Interface) to communicate among many cores.

“Clusters will go through another metamorphosis,” Sterling predicted, adding, “commodity clusters will survive paradigm shifts.”

Current trends suggest the trajectory for computing speed is leveling. Sterling identified a number of problems that may prevent technologists from developing large systems. Power and reliability will be challenging, but Sterling sees the programming model as the biggest obstacle.

In the synchronous model represented by MPI, calculations need to be performed in a specific order, and with precision, to minimize latency, a dance that is difficult to keep up with. Only a handful of codes can run on the hundreds of thousands of cores that are available on today’s large supercomputers. Exascale computers, which Sterling said he hopes to see by the end of the decade, will likely have millions of cores.  At this level of core count, the component reliability and synchronization costs cannot accommodate the usual data-parallel computing approach.

“We must manage asynchrony to allow computing to be self-adaptive,” he said.

As an analogy, he pointed to the difference between a guided missile and a cannon. MPI represents an uncontrolled, ballistic, brute force method to solve problems. The new paradigm, or “experimental execution model” presented by Sterling, is exemplified by his own project, the ParalleX Research Group.

“ParalleX is an abstract test bed to explore the synthesis of ideas for current and extreme scale applications,” Sterling said. “We want to bring strong scaled applications back into the cluster world.”

His software employs micro-checkpointing: ephemeral detection and correction on the fly, and introspection (a kind of machine learning) closing the loop, as in cybernetics, to constantly adjust like the guided missile. It also manages asynchrony by “constraint-based synchronization.”

“You don’t want to tell the program when to do the tasks,” Sterling said. “You want to tell the program the conditions under which the task can be done. This allows the program to decide on its own when to undertake a given task.”

He pointed to initial performance gains for porting the adaptive mesh refinement algorithm for astrophysics to work on ParalleX execution. Results showed an improvement in performance of two to three times by changing the underlying context from MPI to ParalleX.

Some of these same goals are being pursued in a few significant, but not particularly well-known programming experiments, according to Sterling. In addition to ParalleX, he discussed examples from the StarsS project at the Barcelona Supercomputing Center, which employ a new model for data flow executions, and the SWift Adaptive Runtime Machine (SWARM) by ET International.

These execution models may not yet provide optimal computing, Sterling admitted, but the solutions being developed are needed for the community to advance.

“Cluster computing is going through a phase transition,” he asserted. “It will take leadership in this new paradigm shift and it will be the medium where a new paradigm is manifested. “

The tools are open source and XPI, the API for the execution environment, is in alpha testing and available to friendly users. It will be released soon to the general public.

Liu GuangMing, Director, National Supercomputer Center, Tianjin, China

Liu GuangMing, the designer of Tianhe-1A — China’s most powerful supercomputer and the second most powerful in the world — began his Wednesday keynote with an overview of the system deployed at the National Supercomputer Center in Tianjin, China.  He followed with an analysis of the barriers that designers face in building an exascale system.

Built from 143,336 Intel CPU processors, 7168 NVIDIA GPUs, and 2048 Galaxy FT-1000 eight-core processors designed by Liu himself, Tianhe-1A has a peak performance of 2.56 petaflops. The hybrid cluster is comprised largely of commodity parts; however, a few of the components, including the interconnects and FT chips, are proprietary.

“To get to the petascale, you can choose a traditional design or a new design,” Liu said. “We have been looking for a new way to design and implement a petaflop supercomputer.”

When it was deployed in 2010, many in the HPC world questioned Tianhe-1A’s ability to run scientific applications efficiently. Liu described a broad range of problems that used thousands to hundreds of thousands of processors with great efficiency, from seismic imaging for petroleum exploration to decoding the genome of the E. coli bacteria that sickened thousands in Germany. These results were delivered and put to bed some of the questions about Tianhe-1A’s usability.

After describing the technological and scientific successes of Tianhe-1A, Liu transitioned to a discussion of the problems associated with future exascale systems. He divided the problems into five categories: power, memory, communication, reliability, and application scalability, and quantified each problem with mathematical models.

Literally.

Transforming each of the main challenges into equations, he described how the models depict the obstacles facing continued speedups. The goal of this endeavor was to “build a synthesized speedup model and define quantitatively the ‘walls’,” Liu said.

He went on to suggest potential ways over each wall, sometimes through concerted effort by the HPC community, sometimes through emerging innovations.

Liu also showed enthusiasm for untested, emerging technologies such as optical or wireless interconnects, nanoelectronics and quantum and DNA computing, all of which he expects to play a role in the evolution of new systems. He pointed to the high-speed 3D interconnects associated with the Cray XT5 and Fujitsu K computer systems as examples of current technologies that he believes are on the right path to reaching the exascale.

Liu also gave examples of instances where the community must do a better job of optimizing applications for larger systems. Speaking about computer memory, he classified six types of data access that must be considered when speeding-up and scaling-up applications to tens of thousands of cores.

“Traditional optimization techniques usually consider only some of these characteristics,” Liu said. “We must consider all six characteristics and create a harmonious optimization algorithm.”

This holistic, deep thinking about the interrelationship of various levels of computation were the main message of Liu’s presentation. He repeatedly returned to graphs that showed the impact of various processes, from memory access and communication, to power consumption and cost, on the overall time and efficiency of computation.

“To reach the exascale, we must research solutions at all system levels,” Liu concluded.

Charles Moore, Corporate Fellow and the Technology Group CTO, Advanced Micro Devices

Reaching exascale was the subtext of Charles Moore’s Thursday keynote at IEEE Cluster 2011, but AMD’s emerging line of accelerated processing units (APUs) was the real subject of his talk.

APUs are a class of chip that Moore believes will power future exascale systems. According to Moore, exascale systems will achieve their massive speedup by using both CPUs and GPUs or other accelerators.

“We are approaching what we at AMD call the heterogeneous systems era,” Moore said. That alone is not groundbreaking; what is important is the fact but for AMD, these cores will all be located on the same chip.

Among the chips discussed by Moore were the “Brazos” E-series Fusion APU, which contains dual cores, dual GPUs, and a video accelerator on a single chip. It achieves 90 gigaflops of single-precision performance using just 18W TDP. “Desna,” Brazos’ little cousin, runs on only 6W, and is suitable for passively cooled designs like tablets. “Llano,” AMD’s higher-end chip, will have four CPU cores, advanced GPUs, and will offer 500 gigaflops of compute power per node.

One advantage of AMD’s new line is that you “can use this chip for graphics or as a compute offload or both at the same time,” Moore said.

The powerful chips that Moore prophesied won’t quite take us to the exascale, but they will get us most of the way, he said. For exascale, an overhaul of the memory architecture and programming models is needed.

Moore alluded to 3D stacked memory being developed by AMD as a possible technological solution to memory access problems. He also described the new AMD Fusion system architecture, where the goal is “making the GPU a first class citizen in the system architecture.”

The Fusion system architecture itself is “agnostic for CPU and GPU.”  “We’ll add other accelerators to this frame in the future,” Moore said. “It’s not just about GPUs, it’s about heterogeneous computing in general.”

Openness was a common theme in the last part of Moore’s talk where he described AMD’s long-standing dedication to open source software and standards. He discussed emerging standards including HyperShare, the Open Compute Project, and the Common Communication Interface, which he believes will play key roles in getting to exascale.

“Open standards are the basis for large ecosystems,” he said. “If you look over time, open standards always win.”

Looking beyond the next-generation of chips, Moore described the potential for an “awesome exascale-class” 10-teraflop x86 APU computing node feasible in the 2018 timeframe.

“We intend to make the unprecedented processing capability of the APU as accessible to programmers as the CPU is today.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and implementation of artificial intelligence (AI) tools, while the Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are many interesting stories, and only a few ever become headli Read more…

Quantum Tech Sector Hiring Stays Soft

June 13, 2024

New job announcements in the quantum tech sector declined again last month, according to an Quantum Economic Development Consortium (QED-C) report issued last week. “Globally, the number of new, public postings for Qu Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. A typical supercomputer lifecycle is about five to six years Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently king of accelerated computing) wins again, sweeping all nine Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research computing centers, national labs, federal agencies, and univ Read more…

Shutterstock_666139696

Argonne’s Rick Stevens on Energy, AI, and a New Kind of Science

June 17, 2024

The world is currently experiencing two of the largest societal upheavals since the beginning of the Industrial Revolution. One is the rapid improvement and imp Read more…

Under The Wire: Nearly HPC News (June 13, 2024)

June 13, 2024

As managing editor of the major global HPC news source, the term "news fire hose" is often mentioned. The analogy is quite correct. In any given week, there are Read more…

Labs Keep Supercomputers Alive for Ten Years as Vendors Pull Support Early

June 12, 2024

Laboratories are running supercomputers for much longer, beyond the typical lifespan, as vendors prematurely deprecate the hardware and stop providing support. Read more…

MLPerf Training 4.0 – Nvidia Still King; Power and LLM Fine Tuning Added

June 12, 2024

There are really two stories packaged in the most recent MLPerf  Training 4.0 results, released today. The first, of course, is the results. Nvidia (currently Read more…

Highlights from GlobusWorld 2024: The Conference for Reimagining Research IT

June 11, 2024

The Globus user conference, now in its 22nd year, brought together over 180 researchers, system administrators, developers, and IT leaders from 55 top research Read more…

Nvidia Shipped 3.76 Million Data-center GPUs in 2023, According to Study

June 10, 2024

Nvidia had an explosive 2023 in data-center GPU shipments, which totaled roughly 3.76 million units, according to a study conducted by semiconductor analyst fir Read more…

ASC24 Expert Perspective: Dongarra, Hoefler, Yong Lin

June 7, 2024

One of the great things about being at an ASC (Asia Supercomputer Community) cluster competition is getting the chance to interview various industry experts and Read more…

HPC and Climate: Coastal Hurricanes Around the World Are Intensifying Faster

June 6, 2024

Hurricanes are among the world's most destructive natural hazards. Their environment shapes their ability to deliver damage; conditions like warm ocean waters, Read more…

Atos Outlines Plans to Get Acquired, and a Path Forward

May 21, 2024

Atos – via its subsidiary Eviden – is the second major supercomputer maker outside of HPE, while others have largely dropped out. The lack of integrators and Atos' financial turmoil have the HPC market worried. If Atos goes under, HPE will be the only major option for building large-scale systems. Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Everyone Except Nvidia Forms Ultra Accelerator Link (UALink) Consortium

May 30, 2024

Consider the GPU. An island of SIMD greatness that makes light work of matrix math. Originally designed to rapidly paint dots on a computer monitor, it was then Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Some Reasons Why Aurora Didn’t Take First Place in the Top500 List

May 15, 2024

The makers of the Aurora supercomputer, which is housed at the Argonne National Laboratory, gave some reasons why the system didn't make the top spot on the Top Read more…

Leading Solution Providers

Contributors

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

The NASA Black Hole Plunge

May 7, 2024

We have all thought about it. No one has done it, but now, thanks to HPC, we see what it looks like. Hold on to your feet because NASA has released videos of wh Read more…

Google Announces Sixth-generation AI Chip, a TPU Called Trillium

May 17, 2024

On Tuesday May 14th, Google announced its sixth-generation TPU (tensor processing unit) called Trillium.  The chip, essentially a TPU v6, is the company's l Read more…

Intel’s Next-gen Falcon Shores Coming Out in Late 2025 

April 30, 2024

It's a long wait for customers hanging on for Intel's next-generation GPU, Falcon Shores, which will be released in late 2025.  "Then we have a rich, a very Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

Intel Plans Falcon Shores 2 GPU Supercomputing Chip for 2026  

August 8, 2023

Intel is planning to onboard a new version of the Falcon Shores chip in 2026, which is code-named Falcon Shores 2. The new product was announced by CEO Pat Gel Read more…

How the Chip Industry is Helping a Battery Company

May 8, 2024

Chip companies, once seen as engineering pure plays, are now at the center of geopolitical intrigue. Chip manufacturing firms, especially TSMC and Intel, have b Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire