SDSC’s New Storage Cloud: ‘Flickr for Scientific Data’

By Michael Feldman

October 6, 2011

Last month, the San Diego Supercomputer Center launched what it believes is “the largest academic-based cloud storage system in the U.S.” The infrastructure is designed to serve the country’s research community and will be available to scientists and engineers from essentially any government agency that needs to archive and share super-sized data sets.

Certainly the need for such a service exists. The modern practice of science is a community activity and the way researchers collaborate is by sharing their data. Before the emergence of cloud, the main way to accomplish that was via emails and sending manuscripts back and forth over the internet. But with the coalescence of some old and new technologies, there are now economically viable ways for sharing really large amounts of data with colleagues.

In the press release describing the storage cloud, SDSC director Michael Norman described it thusly: “We believe that the SDSC Cloud may well revolutionize how data is preserved and shared among researchers, especially massive datasets that are becoming more prevalent in this new era of data-intensive research and computing.” Or as he told us more succinctly, “I think of it as Flickr for scientific data.”

It’s not just for university academics. Science projects under the DOE, NIH, NASA, and others US agencies are all welcome. Even though the center is underwritten by the NSF, it gets large amounts funding and researchers from all of those organizations. Like most NSF-supported HPC centers today, SDSC is a multi-agency hub.

Norman says that the immediate goal of this project is to support the current tape archive customers at SDSC with something that allows for data sharing. For collaboration, he says, tape archive is probably the worst possible solution. Not only is the I/O bandwidth too low, but with a tape platform, there is always a computer standing between you and your data.

With a disk-based cloud solution, you automatically get higher bandwidth, but more importantly, a web interface for accessing data. Every data file is provided a unique URL, making the information globally accessible from any web client. “It can talk to your iPhone as easily as it can talk to your mainframe,” says Norman.

The initial cloud infrastructure consists of 5.5 petabytes of disk capacity linked to servers via a couple of Arista Networks 7508 switches, which provide 10 terabits/second of connectivity. Dell R610 nodes are used for the storage servers, as well as for load balancing and proxy servers. The storage hardware is made up of Supermicro SC847E26 JBODs, with each JBOD housing 45 3TB Seagate disks. All of this infrastructure is housed and maintained at SDSC.

The cloud storage will replace the current tape archive at the center, in this case a StorageTek system that currently holds about a petabyte of user data spread across 30 or 40 projects. Over the next 12 to 18 months, SDSC will migrate the data, along with their customers, over to the cloud and mothball the StorageTek hardware.

According to Norman some of these tape users would like to move other data sets into these archives and the cloud should make that process a lot smoother. “We are setting this up as a sustainable business and hope to have customers who use our cloud simply as preservation environment,” he says. For example, they’re already talking with a NASA center that is looking to park their mission data somewhere accessible, but in an archive type environment.

The move to a storage cloud was not all locally motivated however. Government agencies like the NSF and NIH began mandating data sharing plans for all research projects. Principal investigators (PIs) can allocate up to 5 percent of their grant funding for data storage, but as it turns out, on a typical five- or six-figure research grant, that’s not very much money.

In order for such data sharing to be economically viable to researchers, it basically has to be a cost-plus model. Norman thinks they have achieved that with their pricing model, although admits that “if you asked researchers what would be the right price, it would be zero.”

For 100 GB of storage, rates are $3.25/month for University of California (UC) users, 5.66/month for UC affiliates and $7.80/month for customers outside the UC sphere. Users who are looking for a big chunk of storage in excess of 200TB will need to pay for the extra infrastructure, in what the program refers to as their “micro-condo” offering.

The condo pricing scheme is more complex, but is offered to users with really large datasets and for research grants that include storage considerations for proposals and budgeting. And even though this model doesn’t provide for a transparently elastic cloud, the condo model at least makes the infrastructure expandable. According to Norman, their cloud is designed to scale up into the hundreds of petabytes realm.

Although data owners pay for capacity, thanks to government-supported science networks , data consumers don’t pay for I/O bandwidth. Wide are networks under projects such as CENIC (Corporation for Education Network Initiatives in California), ESNet (Energy Sciences Network), and XSEDE (Extreme Science and Engineering Discovery Environment) are public investments that can be leveraged by SDSC’s cloud. That can be a huge advantage over commercial storage clouds like Amazon’s Simple Storage Service (S3), where users have to account for data transfer costs.

While some researchers may end up using commercial offerings like Amazon S3, Norman thinks those types of setups generally don’t cater to academic types and are certainly not part of most researchers’ mindsets. They are also missing the some of the high-performance networking enabled by big 10GbE pipes and low-latency switching at SDSC.

Whether the center’s roll-your-own cloud will be able to compete against commercial clouds on a long-term basis remains to be seen. One of the reasons a relatively small organization like SDSC can even build such a beast today is thanks in large part to the availability of cheap commodity hardware and the native expertise at the center to build high-end storage systems from parts.

There is also OpenStack — an open-source cloud OS that the SDSC is using as the basis of their offering. Besides being essentially free for the taking, the non-proprietary nature of OpenStack also means the center will not be locked into any particular software or hardware vendors down the road.

“With OpenStack going open source, it’s now possible for anybody to set up a little cloud business,” explains Norman “We’re just doing it in an academic environment.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This