SDSC’s New Storage Cloud: ‘Flickr for Scientific Data’

By Michael Feldman

October 6, 2011

Last month, the San Diego Supercomputer Center launched what it believes is “the largest academic-based cloud storage system in the U.S.” The infrastructure is designed to serve the country’s research community and will be available to scientists and engineers from essentially any government agency that needs to archive and share super-sized data sets.

Certainly the need for such a service exists. The modern practice of science is a community activity and the way researchers collaborate is by sharing their data. Before the emergence of cloud, the main way to accomplish that was via emails and sending manuscripts back and forth over the internet. But with the coalescence of some old and new technologies, there are now economically viable ways for sharing really large amounts of data with colleagues.

In the press release describing the storage cloud, SDSC director Michael Norman described it thusly: “We believe that the SDSC Cloud may well revolutionize how data is preserved and shared among researchers, especially massive datasets that are becoming more prevalent in this new era of data-intensive research and computing.” Or as he told us more succinctly, “I think of it as Flickr for scientific data.”

It’s not just for university academics. Science projects under the DOE, NIH, NASA, and others US agencies are all welcome. Even though the center is underwritten by the NSF, it gets large amounts funding and researchers from all of those organizations. Like most NSF-supported HPC centers today, SDSC is a multi-agency hub.

Norman says that the immediate goal of this project is to support the current tape archive customers at SDSC with something that allows for data sharing. For collaboration, he says, tape archive is probably the worst possible solution. Not only is the I/O bandwidth too low, but with a tape platform, there is always a computer standing between you and your data.

With a disk-based cloud solution, you automatically get higher bandwidth, but more importantly, a web interface for accessing data. Every data file is provided a unique URL, making the information globally accessible from any web client. “It can talk to your iPhone as easily as it can talk to your mainframe,” says Norman.

The initial cloud infrastructure consists of 5.5 petabytes of disk capacity linked to servers via a couple of Arista Networks 7508 switches, which provide 10 terabits/second of connectivity. Dell R610 nodes are used for the storage servers, as well as for load balancing and proxy servers. The storage hardware is made up of Supermicro SC847E26 JBODs, with each JBOD housing 45 3TB Seagate disks. All of this infrastructure is housed and maintained at SDSC.

The cloud storage will replace the current tape archive at the center, in this case a StorageTek system that currently holds about a petabyte of user data spread across 30 or 40 projects. Over the next 12 to 18 months, SDSC will migrate the data, along with their customers, over to the cloud and mothball the StorageTek hardware.

According to Norman some of these tape users would like to move other data sets into these archives and the cloud should make that process a lot smoother. “We are setting this up as a sustainable business and hope to have customers who use our cloud simply as preservation environment,” he says. For example, they’re already talking with a NASA center that is looking to park their mission data somewhere accessible, but in an archive type environment.

The move to a storage cloud was not all locally motivated however. Government agencies like the NSF and NIH began mandating data sharing plans for all research projects. Principal investigators (PIs) can allocate up to 5 percent of their grant funding for data storage, but as it turns out, on a typical five- or six-figure research grant, that’s not very much money.

In order for such data sharing to be economically viable to researchers, it basically has to be a cost-plus model. Norman thinks they have achieved that with their pricing model, although admits that “if you asked researchers what would be the right price, it would be zero.”

For 100 GB of storage, rates are $3.25/month for University of California (UC) users, 5.66/month for UC affiliates and $7.80/month for customers outside the UC sphere. Users who are looking for a big chunk of storage in excess of 200TB will need to pay for the extra infrastructure, in what the program refers to as their “micro-condo” offering.

The condo pricing scheme is more complex, but is offered to users with really large datasets and for research grants that include storage considerations for proposals and budgeting. And even though this model doesn’t provide for a transparently elastic cloud, the condo model at least makes the infrastructure expandable. According to Norman, their cloud is designed to scale up into the hundreds of petabytes realm.

Although data owners pay for capacity, thanks to government-supported science networks , data consumers don’t pay for I/O bandwidth. Wide are networks under projects such as CENIC (Corporation for Education Network Initiatives in California), ESNet (Energy Sciences Network), and XSEDE (Extreme Science and Engineering Discovery Environment) are public investments that can be leveraged by SDSC’s cloud. That can be a huge advantage over commercial storage clouds like Amazon’s Simple Storage Service (S3), where users have to account for data transfer costs.

While some researchers may end up using commercial offerings like Amazon S3, Norman thinks those types of setups generally don’t cater to academic types and are certainly not part of most researchers’ mindsets. They are also missing the some of the high-performance networking enabled by big 10GbE pipes and low-latency switching at SDSC.

Whether the center’s roll-your-own cloud will be able to compete against commercial clouds on a long-term basis remains to be seen. One of the reasons a relatively small organization like SDSC can even build such a beast today is thanks in large part to the availability of cheap commodity hardware and the native expertise at the center to build high-end storage systems from parts.

There is also OpenStack — an open-source cloud OS that the SDSC is using as the basis of their offering. Besides being essentially free for the taking, the non-proprietary nature of OpenStack also means the center will not be locked into any particular software or hardware vendors down the road.

“With OpenStack going open source, it’s now possible for anybody to set up a little cloud business,” explains Norman “We’re just doing it in an academic environment.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This