Convey Bends to Inflection Point

By Nicole Hemsoth

October 7, 2011

It’s difficult to ignore the momentum of conversations about data-intensive computing and it’s bleed-over into high performance computing, especially as we look toward November’s SC11 event, which puts the emphasis squarely on big data driven problems.

A number of traditional HPC players, including SGI, Cray and others, are making a push to associate some of their key systems with the specific needs of data-intensive computing. Following a conversation this week with Convey Computer’s Director of Marketing, Bob Masson, and Kevin Wadleigh, the company’s resident math libraries wizard, it was clear that Convey plans to be all over the big data map—and that this trend will continue to demand new architectures that pull the zing of FLOPS in favor of more efficient compute and memory architectures.

The duo from Convey talked at length about the inflection point that is happening in HPC. According to Masson, this shift in emphasis to data-intensive computing won’t ever replace the need for numerically-intensive computing, but opens a new realm within HPC—one that is timed perfectly with the steady influx of data from an unprecedented number of sources.

A recent whitepaper (that prompted our chat with Convey) noted that HPC is “no longer just numerically intensive, it’s now data-intensive—with more and different demands on HPC system architectures.” Convey claims that the “whole new HPC” that is gathered under the banner of data-intensive computing possesses a number of unique characteristics. These features include data sizes in the multi-petabyte and beyond range, high ratio of memory accesses to computing, extremely parallelizable read access/computing, highly dynamic data that can often be processed in real time.

Wadleigh put this move in historical context, pointing to the rapid changes in the 1980s as the industry cycled through a number of architectures meant to maximize floating point performance. While it eventually picked its champion, this process took many years—one could even argue decades—before the most efficient and best performing architecture emerged.

He says this same process is happening, hence the idea of the “inflection point” in high performance computing. While again, the power of the FLOP will not be diminished, when it comes to efficient systems that are optimized for the growing number of graph algorithms deployed to tackle big data problems, massive changes in how we think about architecture will naturally evolve. Of course, if you ask Bob or Kevin—that evolution is rooted in some of the unique FPGA coprocessor and memory subsystem designs their company is offering via their so-called Hybrid Core Architecture.  

While these are all traits that are collected under the “big data” or “data intensive” computing category, another feature—the prevalence of graph algorithms—is of great importance. Problems packing large sets of structured and unstructured data elements are becoming more common in research and enterprise, a fact that warranted a new set of benchmarks to measure graph algorithm performance.

As the preeminent benchmark for data-intensive computing, the Graph 500, measures system performance on graph problems using a standardized measure for determining the speed it takes the system to transverse the graph. While this could be a short book on its own, suffice to say, the Graph 500 website has plenty of details about the benchmark algorithm—and details about the top performing systems as announced at ISC this past summer. Convey feels confident about its position on the list (after not placing in the top ten for the last list in June) and notes that this year’s Graph 500 champions (TBA at SC11) will either have spent a boatload of money on sheer cores and memory—or will have come up with more efficient approaches to solve efficiency and performance challenges of these types of problems.

Convey claims that when it comes to architectures needed to support this type of computing, standard x86 “pizza box” systems falls way short in terms of a lack of inherent parallelism, memory architecture that is poorly mapped to the type of memory accesses, and a lack of synchronization primitives.

They say that with systems like their Hybrid Core Architecture line, some of these problems are solved, bringing a range of features those with data-intensive computing needs have been asking for. Among the “most desirable” architectural features of this newer class of systems is the need to de-emphasize the FLOPS and concentrate on maximizing memory subsystem performance. Accordingly, they stress their FPGA coprocessor approach to these needs, stating that such systems can be changed on the fly to meet the needs of the application’s compute requirements.

Convey’s high-bandwidth memory subsystem is key to refining the performance and efficiency of graph problems. Their approach to designing a memory system, for instance, that only spits back what was asked for and optimizing aggregate bandwidth, are further solutions. However, even with these features, users need to be able to support thousands of concurrent outstanding requests, thus providing top-tier multi-threading capabilities is critical.

The question is, if HPC as a floating point-driven industry isn’t serving the architectural needs of the data-intensive computing user, what needs to change? According to Wadleigh, who spent his career engaged with math libraries, the differentiator between Convey (and commodity systems, for that matter) is the two-pronged approach of having large memory and a unique memory subsystem. Such a subsystem would be ideal for the kinds of “scatter gather” operations that are in high demand from graph problems.

Wadleigh said that “most memory system today have their best performance when accessing memory sequentially because memory systems bring in a cache line worth of data with 8 64-bit points. Now, as long as you’re using that, it’s great—but if you look at a lot of these graph problems, half of the accesses are to random data scattered around memory, which is very bad when you’re thinking about this for traditional architectures.” He claims that standard x86 systems, at least for these problems, have bad cache locality, bad virtual memory pagetable locality, and these are also bad patterns for distributed memory parallelism.

One other element that Convey stresses is that data-intensive computing systems, at least in terms of their own line, need to have hardware-based synchronization primitives. With the massive parallelism involved, synchronization in read and writes to memory has to be refined. They state that “when the synchronization mechanism is ‘further away’ from the operation, more time is spent waiting for the synchronization with a corresponding reduction in efficiency of parallelization.” In plain English, maintaining this synchronization at the hardware level within the memory subsystem can yield better performance.

With the focus on data-intensive computing at the heart of SC11 and companies with rich histories in HPC, including Convey jockeying for positions across both the Top500 and the Graph 500, it’s not hard to see why the Convey team thinks of this time as an inflection point in high performance computing, and why they think their Hybrid Core architecture is positioned to take advantage of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the pit of your stomach, or at least give you pause. There’s g Read more…

By Sean Thielen

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's output. The Japanese multinational has made a raft of HPC and A Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the computer we use most (hopefully) and understand least. This mon Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee of the House of Representatives voted to accept the recomme Read more…

By Alex R. Larzelere

Summer Reading: IEEE Spectrum’s Chip Hall of Fame

July 17, 2017

Take a trip down memory lane – the Mostek MK4096 4-kilobit DRAM, for instance. Perhaps processors are more to your liking. Remember the Sh-Boom processor (1988), created by Russell Fish and Chuck Moore, and named after Read more…

By John Russell

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provides participants the opportunity to network with industry lea Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fine-Tuning Severe Hail Forecasting with Machine Learning

July 20, 2017

Depending on whether you’ve been caught outside during a severe hail storm, the sight of greenish tinted clouds on the horizon may cause serious knots in the Read more…

By Sean Thielen

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This