Convey Bends to Inflection Point

By Nicole Hemsoth

October 7, 2011

It’s difficult to ignore the momentum of conversations about data-intensive computing and it’s bleed-over into high performance computing, especially as we look toward November’s SC11 event, which puts the emphasis squarely on big data driven problems.

A number of traditional HPC players, including SGI, Cray and others, are making a push to associate some of their key systems with the specific needs of data-intensive computing. Following a conversation this week with Convey Computer’s Director of Marketing, Bob Masson, and Kevin Wadleigh, the company’s resident math libraries wizard, it was clear that Convey plans to be all over the big data map—and that this trend will continue to demand new architectures that pull the zing of FLOPS in favor of more efficient compute and memory architectures.

The duo from Convey talked at length about the inflection point that is happening in HPC. According to Masson, this shift in emphasis to data-intensive computing won’t ever replace the need for numerically-intensive computing, but opens a new realm within HPC—one that is timed perfectly with the steady influx of data from an unprecedented number of sources.

A recent whitepaper (that prompted our chat with Convey) noted that HPC is “no longer just numerically intensive, it’s now data-intensive—with more and different demands on HPC system architectures.” Convey claims that the “whole new HPC” that is gathered under the banner of data-intensive computing possesses a number of unique characteristics. These features include data sizes in the multi-petabyte and beyond range, high ratio of memory accesses to computing, extremely parallelizable read access/computing, highly dynamic data that can often be processed in real time.

Wadleigh put this move in historical context, pointing to the rapid changes in the 1980s as the industry cycled through a number of architectures meant to maximize floating point performance. While it eventually picked its champion, this process took many years—one could even argue decades—before the most efficient and best performing architecture emerged.

He says this same process is happening, hence the idea of the “inflection point” in high performance computing. While again, the power of the FLOP will not be diminished, when it comes to efficient systems that are optimized for the growing number of graph algorithms deployed to tackle big data problems, massive changes in how we think about architecture will naturally evolve. Of course, if you ask Bob or Kevin—that evolution is rooted in some of the unique FPGA coprocessor and memory subsystem designs their company is offering via their so-called Hybrid Core Architecture.  

While these are all traits that are collected under the “big data” or “data intensive” computing category, another feature—the prevalence of graph algorithms—is of great importance. Problems packing large sets of structured and unstructured data elements are becoming more common in research and enterprise, a fact that warranted a new set of benchmarks to measure graph algorithm performance.

As the preeminent benchmark for data-intensive computing, the Graph 500, measures system performance on graph problems using a standardized measure for determining the speed it takes the system to transverse the graph. While this could be a short book on its own, suffice to say, the Graph 500 website has plenty of details about the benchmark algorithm—and details about the top performing systems as announced at ISC this past summer. Convey feels confident about its position on the list (after not placing in the top ten for the last list in June) and notes that this year’s Graph 500 champions (TBA at SC11) will either have spent a boatload of money on sheer cores and memory—or will have come up with more efficient approaches to solve efficiency and performance challenges of these types of problems.

Convey claims that when it comes to architectures needed to support this type of computing, standard x86 “pizza box” systems falls way short in terms of a lack of inherent parallelism, memory architecture that is poorly mapped to the type of memory accesses, and a lack of synchronization primitives.

They say that with systems like their Hybrid Core Architecture line, some of these problems are solved, bringing a range of features those with data-intensive computing needs have been asking for. Among the “most desirable” architectural features of this newer class of systems is the need to de-emphasize the FLOPS and concentrate on maximizing memory subsystem performance. Accordingly, they stress their FPGA coprocessor approach to these needs, stating that such systems can be changed on the fly to meet the needs of the application’s compute requirements.

Convey’s high-bandwidth memory subsystem is key to refining the performance and efficiency of graph problems. Their approach to designing a memory system, for instance, that only spits back what was asked for and optimizing aggregate bandwidth, are further solutions. However, even with these features, users need to be able to support thousands of concurrent outstanding requests, thus providing top-tier multi-threading capabilities is critical.

The question is, if HPC as a floating point-driven industry isn’t serving the architectural needs of the data-intensive computing user, what needs to change? According to Wadleigh, who spent his career engaged with math libraries, the differentiator between Convey (and commodity systems, for that matter) is the two-pronged approach of having large memory and a unique memory subsystem. Such a subsystem would be ideal for the kinds of “scatter gather” operations that are in high demand from graph problems.

Wadleigh said that “most memory system today have their best performance when accessing memory sequentially because memory systems bring in a cache line worth of data with 8 64-bit points. Now, as long as you’re using that, it’s great—but if you look at a lot of these graph problems, half of the accesses are to random data scattered around memory, which is very bad when you’re thinking about this for traditional architectures.” He claims that standard x86 systems, at least for these problems, have bad cache locality, bad virtual memory pagetable locality, and these are also bad patterns for distributed memory parallelism.

One other element that Convey stresses is that data-intensive computing systems, at least in terms of their own line, need to have hardware-based synchronization primitives. With the massive parallelism involved, synchronization in read and writes to memory has to be refined. They state that “when the synchronization mechanism is ‘further away’ from the operation, more time is spent waiting for the synchronization with a corresponding reduction in efficiency of parallelization.” In plain English, maintaining this synchronization at the hardware level within the memory subsystem can yield better performance.

With the focus on data-intensive computing at the heart of SC11 and companies with rich histories in HPC, including Convey jockeying for positions across both the Top500 and the Graph 500, it’s not hard to see why the Convey team thinks of this time as an inflection point in high performance computing, and why they think their Hybrid Core architecture is positioned to take advantage of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM, NVIDIA, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, NVIDIA, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This