Convey Bends to Inflection Point

By Nicole Hemsoth

October 7, 2011

It’s difficult to ignore the momentum of conversations about data-intensive computing and it’s bleed-over into high performance computing, especially as we look toward November’s SC11 event, which puts the emphasis squarely on big data driven problems.

A number of traditional HPC players, including SGI, Cray and others, are making a push to associate some of their key systems with the specific needs of data-intensive computing. Following a conversation this week with Convey Computer’s Director of Marketing, Bob Masson, and Kevin Wadleigh, the company’s resident math libraries wizard, it was clear that Convey plans to be all over the big data map—and that this trend will continue to demand new architectures that pull the zing of FLOPS in favor of more efficient compute and memory architectures.

The duo from Convey talked at length about the inflection point that is happening in HPC. According to Masson, this shift in emphasis to data-intensive computing won’t ever replace the need for numerically-intensive computing, but opens a new realm within HPC—one that is timed perfectly with the steady influx of data from an unprecedented number of sources.

A recent whitepaper (that prompted our chat with Convey) noted that HPC is “no longer just numerically intensive, it’s now data-intensive—with more and different demands on HPC system architectures.” Convey claims that the “whole new HPC” that is gathered under the banner of data-intensive computing possesses a number of unique characteristics. These features include data sizes in the multi-petabyte and beyond range, high ratio of memory accesses to computing, extremely parallelizable read access/computing, highly dynamic data that can often be processed in real time.

Wadleigh put this move in historical context, pointing to the rapid changes in the 1980s as the industry cycled through a number of architectures meant to maximize floating point performance. While it eventually picked its champion, this process took many years—one could even argue decades—before the most efficient and best performing architecture emerged.

He says this same process is happening, hence the idea of the “inflection point” in high performance computing. While again, the power of the FLOP will not be diminished, when it comes to efficient systems that are optimized for the growing number of graph algorithms deployed to tackle big data problems, massive changes in how we think about architecture will naturally evolve. Of course, if you ask Bob or Kevin—that evolution is rooted in some of the unique FPGA coprocessor and memory subsystem designs their company is offering via their so-called Hybrid Core Architecture.  

While these are all traits that are collected under the “big data” or “data intensive” computing category, another feature—the prevalence of graph algorithms—is of great importance. Problems packing large sets of structured and unstructured data elements are becoming more common in research and enterprise, a fact that warranted a new set of benchmarks to measure graph algorithm performance.

As the preeminent benchmark for data-intensive computing, the Graph 500, measures system performance on graph problems using a standardized measure for determining the speed it takes the system to transverse the graph. While this could be a short book on its own, suffice to say, the Graph 500 website has plenty of details about the benchmark algorithm—and details about the top performing systems as announced at ISC this past summer. Convey feels confident about its position on the list (after not placing in the top ten for the last list in June) and notes that this year’s Graph 500 champions (TBA at SC11) will either have spent a boatload of money on sheer cores and memory—or will have come up with more efficient approaches to solve efficiency and performance challenges of these types of problems.

Convey claims that when it comes to architectures needed to support this type of computing, standard x86 “pizza box” systems falls way short in terms of a lack of inherent parallelism, memory architecture that is poorly mapped to the type of memory accesses, and a lack of synchronization primitives.

They say that with systems like their Hybrid Core Architecture line, some of these problems are solved, bringing a range of features those with data-intensive computing needs have been asking for. Among the “most desirable” architectural features of this newer class of systems is the need to de-emphasize the FLOPS and concentrate on maximizing memory subsystem performance. Accordingly, they stress their FPGA coprocessor approach to these needs, stating that such systems can be changed on the fly to meet the needs of the application’s compute requirements.

Convey’s high-bandwidth memory subsystem is key to refining the performance and efficiency of graph problems. Their approach to designing a memory system, for instance, that only spits back what was asked for and optimizing aggregate bandwidth, are further solutions. However, even with these features, users need to be able to support thousands of concurrent outstanding requests, thus providing top-tier multi-threading capabilities is critical.

The question is, if HPC as a floating point-driven industry isn’t serving the architectural needs of the data-intensive computing user, what needs to change? According to Wadleigh, who spent his career engaged with math libraries, the differentiator between Convey (and commodity systems, for that matter) is the two-pronged approach of having large memory and a unique memory subsystem. Such a subsystem would be ideal for the kinds of “scatter gather” operations that are in high demand from graph problems.

Wadleigh said that “most memory system today have their best performance when accessing memory sequentially because memory systems bring in a cache line worth of data with 8 64-bit points. Now, as long as you’re using that, it’s great—but if you look at a lot of these graph problems, half of the accesses are to random data scattered around memory, which is very bad when you’re thinking about this for traditional architectures.” He claims that standard x86 systems, at least for these problems, have bad cache locality, bad virtual memory pagetable locality, and these are also bad patterns for distributed memory parallelism.

One other element that Convey stresses is that data-intensive computing systems, at least in terms of their own line, need to have hardware-based synchronization primitives. With the massive parallelism involved, synchronization in read and writes to memory has to be refined. They state that “when the synchronization mechanism is ‘further away’ from the operation, more time is spent waiting for the synchronization with a corresponding reduction in efficiency of parallelization.” In plain English, maintaining this synchronization at the hardware level within the memory subsystem can yield better performance.

With the focus on data-intensive computing at the heart of SC11 and companies with rich histories in HPC, including Convey jockeying for positions across both the Top500 and the Graph 500, it’s not hard to see why the Convey team thinks of this time as an inflection point in high performance computing, and why they think their Hybrid Core architecture is positioned to take advantage of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This