Convey Bends to Inflection Point

By Nicole Hemsoth

October 7, 2011

It’s difficult to ignore the momentum of conversations about data-intensive computing and it’s bleed-over into high performance computing, especially as we look toward November’s SC11 event, which puts the emphasis squarely on big data driven problems.

A number of traditional HPC players, including SGI, Cray and others, are making a push to associate some of their key systems with the specific needs of data-intensive computing. Following a conversation this week with Convey Computer’s Director of Marketing, Bob Masson, and Kevin Wadleigh, the company’s resident math libraries wizard, it was clear that Convey plans to be all over the big data map—and that this trend will continue to demand new architectures that pull the zing of FLOPS in favor of more efficient compute and memory architectures.

The duo from Convey talked at length about the inflection point that is happening in HPC. According to Masson, this shift in emphasis to data-intensive computing won’t ever replace the need for numerically-intensive computing, but opens a new realm within HPC—one that is timed perfectly with the steady influx of data from an unprecedented number of sources.

A recent whitepaper (that prompted our chat with Convey) noted that HPC is “no longer just numerically intensive, it’s now data-intensive—with more and different demands on HPC system architectures.” Convey claims that the “whole new HPC” that is gathered under the banner of data-intensive computing possesses a number of unique characteristics. These features include data sizes in the multi-petabyte and beyond range, high ratio of memory accesses to computing, extremely parallelizable read access/computing, highly dynamic data that can often be processed in real time.

Wadleigh put this move in historical context, pointing to the rapid changes in the 1980s as the industry cycled through a number of architectures meant to maximize floating point performance. While it eventually picked its champion, this process took many years—one could even argue decades—before the most efficient and best performing architecture emerged.

He says this same process is happening, hence the idea of the “inflection point” in high performance computing. While again, the power of the FLOP will not be diminished, when it comes to efficient systems that are optimized for the growing number of graph algorithms deployed to tackle big data problems, massive changes in how we think about architecture will naturally evolve. Of course, if you ask Bob or Kevin—that evolution is rooted in some of the unique FPGA coprocessor and memory subsystem designs their company is offering via their so-called Hybrid Core Architecture.  

While these are all traits that are collected under the “big data” or “data intensive” computing category, another feature—the prevalence of graph algorithms—is of great importance. Problems packing large sets of structured and unstructured data elements are becoming more common in research and enterprise, a fact that warranted a new set of benchmarks to measure graph algorithm performance.

As the preeminent benchmark for data-intensive computing, the Graph 500, measures system performance on graph problems using a standardized measure for determining the speed it takes the system to transverse the graph. While this could be a short book on its own, suffice to say, the Graph 500 website has plenty of details about the benchmark algorithm—and details about the top performing systems as announced at ISC this past summer. Convey feels confident about its position on the list (after not placing in the top ten for the last list in June) and notes that this year’s Graph 500 champions (TBA at SC11) will either have spent a boatload of money on sheer cores and memory—or will have come up with more efficient approaches to solve efficiency and performance challenges of these types of problems.

Convey claims that when it comes to architectures needed to support this type of computing, standard x86 “pizza box” systems falls way short in terms of a lack of inherent parallelism, memory architecture that is poorly mapped to the type of memory accesses, and a lack of synchronization primitives.

They say that with systems like their Hybrid Core Architecture line, some of these problems are solved, bringing a range of features those with data-intensive computing needs have been asking for. Among the “most desirable” architectural features of this newer class of systems is the need to de-emphasize the FLOPS and concentrate on maximizing memory subsystem performance. Accordingly, they stress their FPGA coprocessor approach to these needs, stating that such systems can be changed on the fly to meet the needs of the application’s compute requirements.

Convey’s high-bandwidth memory subsystem is key to refining the performance and efficiency of graph problems. Their approach to designing a memory system, for instance, that only spits back what was asked for and optimizing aggregate bandwidth, are further solutions. However, even with these features, users need to be able to support thousands of concurrent outstanding requests, thus providing top-tier multi-threading capabilities is critical.

The question is, if HPC as a floating point-driven industry isn’t serving the architectural needs of the data-intensive computing user, what needs to change? According to Wadleigh, who spent his career engaged with math libraries, the differentiator between Convey (and commodity systems, for that matter) is the two-pronged approach of having large memory and a unique memory subsystem. Such a subsystem would be ideal for the kinds of “scatter gather” operations that are in high demand from graph problems.

Wadleigh said that “most memory system today have their best performance when accessing memory sequentially because memory systems bring in a cache line worth of data with 8 64-bit points. Now, as long as you’re using that, it’s great—but if you look at a lot of these graph problems, half of the accesses are to random data scattered around memory, which is very bad when you’re thinking about this for traditional architectures.” He claims that standard x86 systems, at least for these problems, have bad cache locality, bad virtual memory pagetable locality, and these are also bad patterns for distributed memory parallelism.

One other element that Convey stresses is that data-intensive computing systems, at least in terms of their own line, need to have hardware-based synchronization primitives. With the massive parallelism involved, synchronization in read and writes to memory has to be refined. They state that “when the synchronization mechanism is ‘further away’ from the operation, more time is spent waiting for the synchronization with a corresponding reduction in efficiency of parallelization.” In plain English, maintaining this synchronization at the hardware level within the memory subsystem can yield better performance.

With the focus on data-intensive computing at the heart of SC11 and companies with rich histories in HPC, including Convey jockeying for positions across both the Top500 and the Graph 500, it’s not hard to see why the Convey team thinks of this time as an inflection point in high performance computing, and why they think their Hybrid Core architecture is positioned to take advantage of this.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This