GPUs Will Morph ORNL’s Jaguar Into 20-Petaflop Titan

By Michael Feldman

October 11, 2011

Jaguar’s days as a CPU-only supercomputer are numbered. Over the next year, the 2.3 petaflop machine at the Department of Energy’s Oak Ridge National Lab (ORNL) will be upgraded by Cray with the new NVIDIA “Kepler” GPUs, producing a system with about 10 times Jaguar’s peak performance. The transformed supercomputer will be renamed Titan and should deliver in the neigborhood of 20 peak petaflops sometime in late 2012.

The current Jaguar system, which has already been upgraded numerous times since it was first deployed in 2009, currently sits at number three on the TOP500 list with a Linpack reading of 1.76 petaflops. Titan will certainly keep the machine in the top 5, even as machines with tens of petaflops start making their way into the big labs over the next couple years.

Titan will also represent the US entry in the echelons of top tier GPU-accelerated supercomputing. As it stands today, three of the top five systems are GPU accelerated: Tianhe-1A and Nebulae in China, and TSUBAME 2.0 in Japan. The current top GPU machine in the US is Edge, a 240-teraflop Appro cluster at Lawrence Livermore National Laboratory. Even Russia, Germany, Italy have larger systems.

According to Steve Scott, the newly minted chief technology officer for NVIDIA’s Tesla Business Unit, the fact that ORNL is making such a significant commitment to GPU computing is a big endorsement for the architecture. It’s no secret that HPC is now constrained by energy use. Moore’s Law has managed to shrink the transistor geometries, but the power wall has become the defining limitation for performance increases. “It’s all about power efficiency” Scott told HPCwire, “which is why we think the GPU story is so compelling.”

While GPUs are not truly general-purpose processors, their ability to perform data-parallel computation in a much more energy-efficient manner than CPUs has vaulted them to prominence in the HPC realm. “It’s hard to overstate the importance of the sea change that has happened in high performance computing,” notes Scott. “This wonderful ride we’ve been on for the past 30 years — every time we halve the size of transistor, the voltage drops, power stays the same, and performance improves exponentially — has been fantastic, but it’s done.”

Although the US, in general, has been a bit late in embracing GPU technology for HPC, the Titan supercomputer has been on the drawing board at Oak Ridge for at least a couple of years. But the technology necessary to implement that machine is just now catching up with those requirements.

Beginning this fall, most of 18,688 of Jaguar’s current XT5 nodes will be retrofitted with Cray’s new XK6 blades, which the company unveiled in May. The immediate result is that the current dual-socket 6-core AMD Opteron nodes will be swapped out for a single 16-core “Interlagos” CPU node and the interconnect will upgraded from SeaStar 2 to Gemini. Each XK6 blade encompasses four compute nodes, with an Opteron on each one, and the ability to connect each of those CPUs to a Tesla GPU on a PCIe daughter card.

Initially, 960 of those XK6 nodes will be outfitted with the Fermi-class Tesla M2090 GPUs, with the other odd 17 thousand remaining as CPU-only blades for the time being. This first phase of Titan is expected to be completed before the end of the year. Then in the second half of 2012, all 18,688 nodes, including the original Fermi-equipped blades, will be populated with NVIDIA’s next-generation Kepler Teslas.

NVIDIA has not provided detailed specs on the Kepler GPUs, but according to Scott their performance per watt will be more be than double that of the Fermi parts, while fitting into the same power envelope. Given the current Fermi Tesla cards (GPUs plus memory) deliver 665 gigaflops, the new Kepler GPU should yield at least 1330 gigaflops.

For the time being, Oak Ridge is promising only 10 to 20 petaflops for the final system, although the peak performance could go considerably higher. According to Buddy Bland, project director at ORNL’s Leadership Computing Facility, they currently don’t have the money in hand to upgrade all 18K nodes. The actual scope of the Titan build-out will “depend on the budget available.”

Theoretically though, if all existing nodes are populated with the new Kepler parts, the system should deliver at least 24.8 petaflops of GPU power. An equal number of Interlagos CPUs should contribute more than two additional petaflops on top of that. By the time all the dust has settled, Titan could be within spitting distance of 30 petaflops. 

The amount of power the new system will draw is also unknown, but it will certainly have a better performance per watt ratio than Jaguar, which sucks up nearly 7 MW for its 2.33 peak petaflops. By contrast, Japan’s Fermi-accelerated TSUBAME system uses just 1.4 MW for its 2.29 petaflops. Since ORNL’s new machine will use the more efficient Kepler GPUs, its efficiency should be significantly better. “We view Titan as the leading indicator of where people are going as they look to solve the energy challenges for the next five to ten years,” says Scott.

How all those peak flops turn into actual application performance remains to be seen. Extracting high levels of sustained computation from these multi-petaflop machines is notoriously difficult, with only a handful of codes able to attain more than a petaflop of performance. Adding GPUs to the mix has made that harder, at least in the short term.

In this regard, Oak Ridge, with one of the premier computational lab’s on the planet, has a good chance of pushing the envelope. Using smaller GPU clusters, computations scientists at ORNL and elsewhere have been busy porting six flagship science codes to CUDA, include Wang-Landau/LSMS for material science; S3D for engine combustion; PFLOTRAN for underground C02 sequestration and for underground contaminant containment; Denovo for radiation transport code in nuclear engineering; CAM-SE for climate change modeling; and LAMMPS, a molecular dynamics simulation code. Scott says ORNL, Cray and NVIDIA have been working together to adapt these science codes for heterogenous computing so that they are ready to go when Titan boots up.

This first phase of Titan is expected to generate more than $60 million in revenue for Cray, which could end up in the company’s hands before the end of the year. Over the lifetime of the contract, Cray is looking to collect more than $97 million, although if upgrade options are exercised, that number could go considerably higher.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This