IBM Stands on Platform to Reach HPC

By Nicole Hemsoth

October 12, 2011

Although rumors have been afoot for several weeks, Tuesday brought the official word that privately-held Platform Computing was the next acquisition for a software company-hungry IBM.

IBM is not just eyeing companies that come flavored with cloud-geared code. Platform’s MapReduce product, cluster management suite, and tools for technical computing users make it the total package to meet IBM’s increasing emphasis on the keywords cloud, big data and technical computing.

According to IBM’s media relations maven, Tracy Sullivan, “Cloud computing is one of four major IBM growth plays (which also include Smarter Planet, business analytics and emerging markets) and we have forecasted over $7 billion in revenue by 2015.” Sullivan says that Platform’s software is a core element in many enterprise environments and that new technology that will be announced this week will extend cloud services for enterprise customers on security, portability and management fronts.

Like IBM, however, Platform sees clouds as part of a natural evolution in IT versus a revolutionary concept that stands alone, at least in terms of its role in HPC.  As Platform’s CEO Songnian Zhou described in the interview below, clouds are a transition from previous movements and while they require a specialized approach given the unique set of concerns, the goal is to open HPC to new users by making high performance computing access and use manageable and seamless. In many ways, he echoed these same ideas today—as IBM stressed the role of clouds in the bigger technical computing picture.

While a great deal of today’s press teleconference hinged on the role of managing private and hybrid cloud building, IBM officials were careful to note that this acquisition goes far beyond cloud. The key takeaway they say is to understand IBM can leverage Platform’s deep reach into HPC markets (which now means cloud or big data for some users) and further their cloudy and data-intensive computing capabilities, and client base.

Platform claims more than 2,000 customers, including what they cite as “23 of the top 30 largest global enterprises.” With names like Citigroup, Harvard Medical School and the University of Tokyo under their belt, it is not difficult to see why IBM would eye the Toronto-based company for acquisition of some valuable proprietary code—not to mention the equally important litany of major enterprise customers. While the transition is expected to be seamless without great immediate changes, the interesting part here will be the software integration decisions and the way this inks in new entries to IBM’s technical computing black book.

IBM already has a number of products that seem to overlap to some extent with the addition of Platform’s offerings to the mix (Tivoli suite, xCAT, and the ilk) but there are a number of new additions on the cloud and grid management side that will round out IBM’s distributed computing portfolio, including Platform ISF. In general, the software itself might not be quite as important as the fact that it’s software Platform has fine tuned over the course of years (and through a number of major transitions from clusters, grids and now clouds) just for the performance conscious.

In other words, the HPC focus fits in better with IBM’s stated goals than the specific software packages themselves. Throw big data and cloud into that HPC-flavored mix and it makes a stew that IBM wants to serve to a technical computing market it expects will boom in the next few years. For instance, reaching out to the performance-obsessed financial services industry might now be within closer reach for IBM since many financial institutions have been long-term Platform customers. With its existing product set pre-acquisition, nabbing this finicky set of customers might have been much more of a stretch.

Factor in effective grid management (financial services is one industry that still makes serious use of grid computing) and the ability to create distributed resources or private clouds, and it’s not hard to see the real value proposition from IBM’s view.  This goes far beyond basic business analytics and ushers in a potentially hugely lucrative new customer base with top-performing systems and high performance private and hybrid enterprise and research clouds.

Although financial details about the acquisition, which should close at the end of this year, were not disclosed, one can guess that IBM forked over a significant sum. Platform has been operationally profitable since its inception nearly 20 years ago and marks a potentially lucrative opportunity for IBM to bring in technical computing customers it might not have been able to reel in with its current set of enterprise-geared offerings.

Speaking of Platform’s history, it’s worth noting that the company was, in every sense of the word, bootstrapped—lending a bit more weight to the relevance of its consistent profitability. On that note, for the curious, there is another, more detailed interview with Platform’s CEO, Songnian Zhou that describes the impetus, inception and evolution of the company over the years—and how it has changed to meet the needs of clusters, grids, clouds—and now some rather interesting combinations of all three.

During the 2010 interview with Zhou, a point emerged that reflected sentiments expressed from IBM about the mainstreaming of HPC into new markets—and the need to find tools that can scale and adapt to these demands. Like IBM, which wants to reach more users that are using HPC without necessarily calling it that, Platform’s approach was to make HPC easier, a key goal of IBM’s technical computing push, especially as far its private cloud approach goes.

As Zhou said last year, “Unlike in enterprise where cloud becomes a key point to make a change, HPC has accomplished a lot of the same thing without it. On the other hand, cloud is highly complementary and supplemental to what’s already been done in HPC because it provides greater flexibility of resources and the opportunity of not having to own the resources to get the resources. This gives a lot of technologies and business advantage and has the potential to make HPC easier to use and more cost-effective, thus we will see more widespread use of HPC without the user even knowing it is HPC.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

TACC Helps ROSIE Bioscience Gateway Expand its Impact

April 26, 2017

Biomolecule structure prediction has long been challenging not least because the relevant software and workflows often require high end HPC systems that many bioscience researchers lack easy access to. Read more…

By John Russell

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

IBM, Nvidia, Stone Ridge Claim Gas & Oil Simulation Record

April 25, 2017

IBM, Nvidia, and Stone Ridge Technology today reported setting the performance record for a “billion cell” oil and gas reservoir simulation. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization Optimizing Life Sciences Operations and Care Delivery

As patients continually demand a better quality of care and increasingly complex workloads challenge healthcare organizations to innovate, investing in the right technologies is key to ensuring growth and success. Read more…

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Messina Update: The U.S. Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

ASC17 Makes Splash at Wuxi Supercomputing Center

April 24, 2017

A record-breaking twenty student teams plus scores of company representatives, media professionals, staff and student volunteers transformed a formerly empty hall inside the Wuxi Supercomputing Center into a bustling hub of HPC activity, kicking off day one of 2017 Asia Student Supercomputer Challenge (ASC17). Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of a new generation of chips designed specifically for deep learning workloads. Read more…

By Alex Woodie

NERSC Cori Shows the World How Many-Cores for the Masses Works

April 21, 2017

As its mission, the high performance computing center for the U.S. Department of Energy Office of Science, NERSC (the National Energy Research Supercomputer Center), supports a broad spectrum of forefront scientific research across diverse areas that includes climate, material science, chemistry, fusion energy, high-energy physics and many others. Read more…

By Rob Farber

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This