RAMCloud: When Disks and Flash Memory are Just Too Slow

By Michael Feldman

October 20, 2011

As storage customers look for a way off the spinning disk merry-go-round, SSDs have become the hottest gadgets in the enterprise. But a team of computer scientists at Stanford University think they can do even better. The researchers have come up with a scalable, high performance storage approach dubbed RAMCloud — RAM because it stores all the data in DRAM, and cloud because it can aggregate the memory resources of a whole datacenter.

The cloud reference also alludes to its main application space in the internet universe of Web page slinging and online database transacting. But the scalability and performance aspect of RAMCloud also makes it a candidate for high performance computing, particularly those applications that swing to the data-intensive, rather than compute-intensive, side of the spectrum.

The RAMCloud project is led by Stanford professor John Ousterhout, inventor of the Tcl scripting language. No stranger to the world of performance computing, Ousterhout’s research work has delved into, among other things, distributed operating systems and high-performance file systems. Outside of the academic sphere, he serves as the chairman of Electric Cloud Inc., a company he founded in 2002 to provide high-performance software build tools.

In a nutshell, RAMCloud is a software platform that aggregates the memory of a large number of commodity servers to host all the application data in a datacenter or cluster. Since DRAM is being used, RAMCloud is said to deliver 100-1000x lower latency than disk-based storage and 100-1000x greater throughput. The software uses a combination of replication and backup techniques to deal with the fact that DRAM drops all its bits when power is cut off.

The original RAMCloud design was described in detail in a 2009 and is encapsulated in a recent article in the Communications of the ACM. The researchers are convinced that the current reliance on hard disk technology will not suffice for data-intensive applications, which are quickly spreading into every aspect of enterprise computing. As the researchers proclaim in the article, “if RAMCloud succeeds, it will probably displace magnetic disk as the primary storage technology in data centers.”
 
The two most important attributes of RAMCloud is its ability to scale across thousands of server and its extremely low latency and. Regarding the latter, we are talking latencies on the order of 5-10 µs, which is 1,000 times faster than disk and about 5 times faster than flash. The researchers admit this level of latency is probably overkill for any current Web-based applications, but should encourage new applications that would take advantage of such performance. (Of course, for some HPC applications, single-digit microsecond latencies would be greatly appreciated today.)

Unfortunately, network latency is going to impinge on the aggregate latency of a RAMCloud set up. While the researchers recognized that low-latency networks such as InfiniBand, Myrinet, and high performance Ethernet from vendors like Arista, can achieve 10µs latencies across a datacenter, most facilities today employ TCP/IP on top of Ethernet, which provide typical round-trips on the order of 300µs–500µs. Optimizing these networks in regard to latency will be key to maximizing RAMCloud performance.

As far as scalability is concerned, using today’s commodity server and memory technology, the researchers think RAMClouds as large as 500 TB can be constructed. At current memory prices, RAMCloud storage would cost around $60/GB. Within 5 to 10 years, they predict it will be possible to build RAMClouds as large as 1 to 10 petabytes at a cost of under $5/GB.

Of course, DRAM-base storage is always likely to be more expensive than disks or solid state storage. At current pricing a DRAM storage system is about 50-100 time more costly than a disk-based set up and 5 to 10 time more costly than a flash memory system. But for high throughput I/O applications, such prices are easier to justify. The researchers argue that if your code’s execution is bound by how fast you can access data in storage, DRAM can actually be 10 to 100 times less expensive than disk.

There are a number of issues that are still to be worked out with the technology, including the exact data model and API, how to optimize latency in regard to remote procedure calls, data durability and availability, cluster management, application multi-tenancy, and support for atomic updates. Nevertheless, these are all solvable issues.

With the ongoing buildup of scaled-out datacenters, along with the emergence of data-intensive applications, much of the groundwork for RAMCloud is already being laid. No timeline has been offered to turn the RAMCloud research project into a commercial offering, but there don’t appear to be any technological showstoppers. And given Ousterhout’s entrepreneurial experience with Electric Cloud, a startup may not be too far off.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Can Markov Logic Take Machine Learning to the Next Level?

July 11, 2018

Advances in machine learning, including deep learning, have propelled artificial intelligence (AI) into the public conscience and forced executives to create new business plans based on data. However, the scarcity of hig Read more…

By Alex Woodie

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

ORNL Summit Supercomputer Is Officially Here

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer today at an event presided over by DOE Secretary Rick Perry. Read more…

CSIR, Nvidia Partner to Launch GPU-Powered AI Center in India

July 10, 2018

As reported by a number of Indian news outlets, India’s Council of Scientific and Industrial Research (CSIR) is partnering with Nvidia to establish a new, AI-focused Centre of Excellence in New Delhi, India's capital. Read more…

By Oliver Peckham

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Meet the ISC18 Cluster Teams: Up Close & Personal

July 6, 2018

It’s time to meet your ISC18 Student Cluster Competition teams. While I was able to film them live at the ISC show, the trick was finding time to edit the vid Read more…

By Dan Olds

PRACEdays18 Keynote Allan Williams (Australia/NCI): We’re Open for Business Down Under!

July 5, 2018

The University of Ljubljana in Slovenia hosted the third annual EHPCSW18 and fifth annual PRACEdays18 events which opened with a plenary session on May 29, 2018 Read more…

By Elizabeth Leake (STEM-Trek for HPCwire)

HPC Under the Covers: Linpack, Exascale & the Top500

June 28, 2018

HPCers can get painted as a monolithic bunch by outsiders, but internecine disagreements abound over the HPCest of HPC jargon, as was evident at ISC this week. Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This