Rensselaer Orders Up Blue Gene/Q for Exascale and Data-Intensive Research

By Michael Feldman

October 25, 2011

Last month Rensselaer Polytechnic Institute (RPI) announced it had been awarded a $2.65 million grant to acquire a 100 teraflop Blue Gene/Q supercomputer for its Computational Center for Nanotechnology Innovations (CCNI). The new system will also include a multi-terabyte RAM-based storage accelerator, petascale disk storage, and rendering cluster plus remote display wall system for visualization.

Even though the yet unnamed Q machine is just a microcosm of a true petascale supercomputer, it is designed to be used for exascale research: scaling codes, exploring alternative approaches to checkpointing, and dealing with I/O bottlenecks. The supercomputer will also provide a home for a variety of research applications at Rensselaer.

According to the press release these projects include: “developing new methods for the diagnosis of breast cancer using data from non-invasive techniques; modeling plasmas to aid the design and safety of future fusion reactors; modeling wind turbine design to increase efficiencies and reduce maintenance; application of new knowledge discovery algorithms to very large semantic graphs for climate change and biomedical research, modeling heat flow in the world’s oceans, integrating data and computations across scales to gain a better understanding of biological systems and improve health care; and many others.”

This is the first machine CCNI will deploy with NSF funding behind it and the first new supercomputer at the center since it launched five years ago. CCNI was kicked off in 2006 with a $100 million investment from New York State, RPI, and IBM, using the initial cash to build out the center, hire staff, and acquire HPC resources. Its stated mission: to advance the science of semiconductor manufacturing and related nanotechnology applications for academia and industry.

The NSF money to buy the Blue Gene/Q system came out the agency’s Major Research Instrumentation Program, which, as the name implies, funds instruments for scientific and engineering research. These include devices such as mass spectrometers, X-rays, laser systems, microscopes, as well as a variety of computational resources. Because of NSF’s involvement, time on the system will be available to researchers nationally. Rensselaer scientists and engineers, as well as those at other New York state universities will also be able to bid for cycles on the system.

The first Rensselaer supercomputer was a Blue Gene/L system, along with a Power-based Linux system and some smaller AMD Opteron clusters. The Blue Gene/L system, which is still operational, delivers 90 teraflops and represents most of the computation capacity at CCNI. When installed in 2007 it was the seventh most powerful system in the world. Despite CCNI’s rather modest computational capacity by 2011 standards, more than 700 researchers spread out across 50 universities, government labs, and commercial organizations have used the center’s HPC resources to run their science and engineering workloads.

Although the upcoming Blue Gene/Q is relatively small as supercomputers go — a mere 100 teraflops — it will provide as much computational horsepower as the older L system plus all the remaining clusters at the center, According to CCNI, the upcoming system will fit into just half a rack — about 1/30 the space as center’s original Blue Gene machine.

And, because it’s a Blue Gene Q, it should provide some of the best performance per watt on the planet. A similar 100 teraflop Blue Gene/Q prototype system, which is housed at IBM’s T. J. Watson Research Center, delivered 2097 megaflops/watt (the number one system on the latest Green500 list), and consumed just 41 KW. To put that in perspective, the 2005-era ASC Purple supercomputer also delivered 100 peak teraflops, but consumed a whopping 7,500 KW.

According to CCNI Director James Myers, for the time being will keep their other HPC systems, including the Blue Gene/L, operational. But he admits that it will probably make sense at some point to decommission the older machines, considering how little performance per watt they are delivering. In general, the operational costs of maintaining five-year-old HPC machines these days is often better spent on adding newer, more energy-efficient capacity. “We are certainly paying attention to those lifecycle costs,” says Myers.

The new Blue Gene/Q system is scheduled to be installed in 2012, in the same general timeframe that Argonne and Lawrence Livermore National Labs are expected to deploy their much larger Q machines: the 10 petaflop “Mira” system and the 20 petaflop “Sequoia,” respectively.

It is also designed to be a platform for data-intensive applications. The RAM-based storage accelerator that is to be integrated into the system will be a critical component for data-intensive research. Essentially the accelerator is a 2-4 terabyte RAM disk that will be used to greatly speed up I/O for disk-bound applications. It will also be used to support interactive visualization by streaming data from the RAM disk to the visualization cluster without going through the bottleneck of disk storage. According the Myers, the RAM disk is to be based on commodity components, although its exact makeup is still to be worked out.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visitors to the Colorado Convention Center in Denver for the larg Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some cases, city managers didn’t even know existed. Speaking Read more…

By Doug Black

HPE Extreme Performance Solutions

Harness Scalable Petabyte Storage with HPE Apollo 4510 and HPE StoreEver

As a growing number of connected devices challenges IT departments to rapidly collect, manage, and store troves of data, organizations must adopt a new generation of IT to help them operate quickly and intelligently. Read more…

SC17 Student Cluster Competition Configurations: Fewer Nodes, Way More Accelerators

November 16, 2017

The final configurations for each of the SC17 “Donnybrook in Denver” Student Cluster Competition have been released. Fortunately, each team received their equipment shipments on time and undamaged, so the teams are r Read more…

By Dan Olds

SC Bids Farewell to Denver, Heads to Dallas for 30th

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

Nvidia Focuses Its Cloud Containers on HPC Applications

November 14, 2017

Having migrated its top-of-the-line datacenter GPU to the largest cloud vendors, Nvidia is touting its Volta architecture for a range of scientific computing ta Read more…

By George Leopold

HPE Launches ARM-based Apollo System for HPC, AI

November 14, 2017

HPE doubled down on its memory-driven computing vision while expanding its processor portfolio with the announcement yesterday of the company’s first ARM-base Read more…

By Doug Black

OpenACC Shines in Global Climate/Weather Codes

November 14, 2017

OpenACC, the directive-based parallel programming model used mostly for porting codes to GPUs for use on heterogeneous systems, came to SC17 touting impressive Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This