Texas Instruments Makes HPC Play with New Multicore DSP Chips

By Michael Feldman

October 27, 2011

A funny thing happened on the way to 4G telecommunications. When Texas Instruments (TI) added floating point smarts to its new digital signal processor (DSP) to support the fourth-generation wireless standard, it found itself with a commercial chip that had some of the most impressive flops/watt performance on the planet. And that got some of the folks at TI wondering if they could parlay that into the ethereal world of high performance computing.

Arnon Friedmann, TI’s Business Manager for Multicore DSP, and who now directs a budding HPC group at the company, says the effort to create a high performance computing presence with its latest DSP architecture is now underway, and there don’t appear to be any showstoppers. “There aren’t any doubts whether the device is capable of scaling to [HPC] products,” Friedmann told HPCwire. “It’s really just a matter of how well the applications can run on the device.”

According to Friedmann a “handful” of universities and commercial HPC customers have already expressed interest in the DSP technology and have been collaborating with engineers at TI to port their applications to the new DSP. “We’re also talking with a number of people who build HPC systems,” he says. “I wouldn’t say that you’re going to see anything immediately, but we’re getting quite a bit of interest.”

The DSP product line at the center of this effort is TI’s new TMS320C66x (aka C66x) series, a multicore chip they designed for 4G cellular base stations and radio network controllers. Launched in November 2010, the C66x is a 40nm chip that comes in single-core, dual-core, quad-core and eight-core variations. Its most distinguishing feature is the addition of floating point instructions, which were incorporated to support the more complex processing required for 4G wireless communications. The previous generation C64x series DSPs supported only fixed point math.

The C66x is implemented with TI’s new KeyStone architecture, which incorporates an eight-way VLIW architecture, a high-speed switch fabric called TeraNet, and a multicore navigator and DMA system that manages packet sending to other cores and peripherals. All the C66x products come with 512 KB of dedicated L2 cache per core, along with 32 KB of L1 cache for both instructions and data.

In its eight-core 1.25 GHz implementation, the C66x delivers 160 single precision (SP) gigaflops, while sucking up just 10 watts of power. That works out to an impressive 16 SP gigaflops/watt. Energy efficiency is a hallmark of DSPs, in general, since they typically populate systems (like the aforementioned cellular base station towers and radio network controllers), where power and cooling is in short supply.

The first HPC-friendly C66x-based device is a PCIe card, which sports four of the eight-core DSPs running at 1.0 GHz. Built by Advantech, a TI parter, the half-length PCIe card delivers 512 SP gigaflops at a modest 50 watts. On-board memory consists of 4 GB of 1333 MHz DDR3 RAM, with full ECC support. They’re also working on a full-length card, with eight DSPs, twice as much memory, and twice the performance.

Compared to the latest Tesla 20-series cards from NVIDIA, which delivers 1331 SP gigaflops at 225 watts, the Advantech hardware is the more impressive product, at least from a peak performance-per-watt perspective. The DSP-equipped card delivers 10 gigaflops/watt while the NVIDIA Tesla module puts out 6 gigaflops/watt. Those are for single precision flops. For double precision, the TI DSP delivers 3/8 of single precision performance, while the Tesla GPU delivers 1/2. In either case though, the TI DSP is the more energy efficient choice.

By the time the Kepler GPUs come out in 2012, and Intel’s first Many Integrated Core (MIC) coprocessor appears in 2013, those performance per watt numbers should be more competitive, but presumably TI can move its DSP performance up the ladder as well.

Like NVIDIA and Intel, Texas Instruments can leverage its volume position in a market much larger than HPC. In TI’s case, they expect to sell their C66x DSPs by the millions each year (as they did with the previous generation C64x line) in order to power the growing 4G wireless infrastructure. The company’s dominant position in that end of the market speaks well for the resources they could throw at this architecture.

The open question is how to do HPC-style software development on DSPs. The good news is that digital signal processors act more or less like a CPU. Unlike GPUs or FPGAs, the TI DSP doesn’t require a special programming language and doesn’t need a host processor to drive it. So the entire application can be run on the DSP, with nothing fancier than traditional C language tools, parallelized with OpenMP and/or MPI. TI offers all of this in its software development kit, including a C compiler, runtime, as well as the appropriate floating point math and parallel programming support. “We have a pretty good history of running complex systems on these DSPs,” says Friedmann.

The HPC group at TI they realize they will need to beef up their software tools to compete with the more mature parallel programming environments offered by Intel and NVIDIA. They’re even considering porting OpenCL to their DSP, but according to Friedmann, would like to see greater uptake in the community before they begin that effort. But their DSP compiler technology is mature, being based on a ten year-old VLIW architecture that has been refined over that period of time. The addition of floating point instructions entailed a relatively straightforward update to the base compiler, says Friedmann.

The new C66x DSPs are already being used in HPC-like workloads in a few specialized applications like semiconductor and LCD flat panel inspection systems. In the past, these set-ups employed hundreds of fixed-point DSPs, but with FP-capable parts now available, they can use fewer parts, and the applications are being updated accordingly. They are also seeing adoption in radar systems and medical imaging, which, again, can take advantage of the DSP’s new floating point prowess. In all of these cases, performance is a key element, since these applications rely on real time, compute-intensive processing.

Currently the company is in the process of running benchmarks against it new floating point processor to demonstrate the extent of its HPC potential. There may be certain types of algorithms that the DSP is particularly adept at. For example, running fast Fourier transforms (FFTs) on the C66x is about 8 to 10 times more efficient than using latest GPUs, according to Friedmann. Specific benchmark results will be forthcoming shortly.

The high performance computing effort at TI is still in its infancy as they learn how to navigate the HPC market and maneuver around established HPC players Intel, NVIDIA, and AMD. In the meantime, a team of 8 to 10 TI engineers has been keeping itself busy collecting applications from interested customers and helping to port and benchmark the codes. At SC11 next month, Friedmann will be demonstrating the DSP card and talking up the potential of the technology. “I do expect it’s going to get interesting in 2012,” says Friedmann.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How Formula 1 Used Cloud HPC to Build the Next Generation of Racing

December 12, 2019

Formula 1, Rob Smedley explained, is maybe the biggest racing spectacle in the world, with five hundred million fans tuning in for every race. Smedley, a chief engineer with Formula 1’s performance engineering and anal Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This