Texas Instruments Makes HPC Play with New Multicore DSP Chips

By Michael Feldman

October 27, 2011

A funny thing happened on the way to 4G telecommunications. When Texas Instruments (TI) added floating point smarts to its new digital signal processor (DSP) to support the fourth-generation wireless standard, it found itself with a commercial chip that had some of the most impressive flops/watt performance on the planet. And that got some of the folks at TI wondering if they could parlay that into the ethereal world of high performance computing.

Arnon Friedmann, TI’s Business Manager for Multicore DSP, and who now directs a budding HPC group at the company, says the effort to create a high performance computing presence with its latest DSP architecture is now underway, and there don’t appear to be any showstoppers. “There aren’t any doubts whether the device is capable of scaling to [HPC] products,” Friedmann told HPCwire. “It’s really just a matter of how well the applications can run on the device.”

According to Friedmann a “handful” of universities and commercial HPC customers have already expressed interest in the DSP technology and have been collaborating with engineers at TI to port their applications to the new DSP. “We’re also talking with a number of people who build HPC systems,” he says. “I wouldn’t say that you’re going to see anything immediately, but we’re getting quite a bit of interest.”

The DSP product line at the center of this effort is TI’s new TMS320C66x (aka C66x) series, a multicore chip they designed for 4G cellular base stations and radio network controllers. Launched in November 2010, the C66x is a 40nm chip that comes in single-core, dual-core, quad-core and eight-core variations. Its most distinguishing feature is the addition of floating point instructions, which were incorporated to support the more complex processing required for 4G wireless communications. The previous generation C64x series DSPs supported only fixed point math.

The C66x is implemented with TI’s new KeyStone architecture, which incorporates an eight-way VLIW architecture, a high-speed switch fabric called TeraNet, and a multicore navigator and DMA system that manages packet sending to other cores and peripherals. All the C66x products come with 512 KB of dedicated L2 cache per core, along with 32 KB of L1 cache for both instructions and data.

In its eight-core 1.25 GHz implementation, the C66x delivers 160 single precision (SP) gigaflops, while sucking up just 10 watts of power. That works out to an impressive 16 SP gigaflops/watt. Energy efficiency is a hallmark of DSPs, in general, since they typically populate systems (like the aforementioned cellular base station towers and radio network controllers), where power and cooling is in short supply.

The first HPC-friendly C66x-based device is a PCIe card, which sports four of the eight-core DSPs running at 1.0 GHz. Built by Advantech, a TI parter, the half-length PCIe card delivers 512 SP gigaflops at a modest 50 watts. On-board memory consists of 4 GB of 1333 MHz DDR3 RAM, with full ECC support. They’re also working on a full-length card, with eight DSPs, twice as much memory, and twice the performance.

Compared to the latest Tesla 20-series cards from NVIDIA, which delivers 1331 SP gigaflops at 225 watts, the Advantech hardware is the more impressive product, at least from a peak performance-per-watt perspective. The DSP-equipped card delivers 10 gigaflops/watt while the NVIDIA Tesla module puts out 6 gigaflops/watt. Those are for single precision flops. For double precision, the TI DSP delivers 3/8 of single precision performance, while the Tesla GPU delivers 1/2. In either case though, the TI DSP is the more energy efficient choice.

By the time the Kepler GPUs come out in 2012, and Intel’s first Many Integrated Core (MIC) coprocessor appears in 2013, those performance per watt numbers should be more competitive, but presumably TI can move its DSP performance up the ladder as well.

Like NVIDIA and Intel, Texas Instruments can leverage its volume position in a market much larger than HPC. In TI’s case, they expect to sell their C66x DSPs by the millions each year (as they did with the previous generation C64x line) in order to power the growing 4G wireless infrastructure. The company’s dominant position in that end of the market speaks well for the resources they could throw at this architecture.

The open question is how to do HPC-style software development on DSPs. The good news is that digital signal processors act more or less like a CPU. Unlike GPUs or FPGAs, the TI DSP doesn’t require a special programming language and doesn’t need a host processor to drive it. So the entire application can be run on the DSP, with nothing fancier than traditional C language tools, parallelized with OpenMP and/or MPI. TI offers all of this in its software development kit, including a C compiler, runtime, as well as the appropriate floating point math and parallel programming support. “We have a pretty good history of running complex systems on these DSPs,” says Friedmann.

The HPC group at TI they realize they will need to beef up their software tools to compete with the more mature parallel programming environments offered by Intel and NVIDIA. They’re even considering porting OpenCL to their DSP, but according to Friedmann, would like to see greater uptake in the community before they begin that effort. But their DSP compiler technology is mature, being based on a ten year-old VLIW architecture that has been refined over that period of time. The addition of floating point instructions entailed a relatively straightforward update to the base compiler, says Friedmann.

The new C66x DSPs are already being used in HPC-like workloads in a few specialized applications like semiconductor and LCD flat panel inspection systems. In the past, these set-ups employed hundreds of fixed-point DSPs, but with FP-capable parts now available, they can use fewer parts, and the applications are being updated accordingly. They are also seeing adoption in radar systems and medical imaging, which, again, can take advantage of the DSP’s new floating point prowess. In all of these cases, performance is a key element, since these applications rely on real time, compute-intensive processing.

Currently the company is in the process of running benchmarks against it new floating point processor to demonstrate the extent of its HPC potential. There may be certain types of algorithms that the DSP is particularly adept at. For example, running fast Fourier transforms (FFTs) on the C66x is about 8 to 10 times more efficient than using latest GPUs, according to Friedmann. Specific benchmark results will be forthcoming shortly.

The high performance computing effort at TI is still in its infancy as they learn how to navigate the HPC market and maneuver around established HPC players Intel, NVIDIA, and AMD. In the meantime, a team of 8 to 10 TI engineers has been keeping itself busy collecting applications from interested customers and helping to port and benchmark the codes. At SC11 next month, Friedmann will be demonstrating the DSP card and talking up the potential of the technology. “I do expect it’s going to get interesting in 2012,” says Friedmann.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement on Monday (Jan. 14 Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This