Texas Instruments Makes HPC Play with New Multicore DSP Chips

By Michael Feldman

October 27, 2011

A funny thing happened on the way to 4G telecommunications. When Texas Instruments (TI) added floating point smarts to its new digital signal processor (DSP) to support the fourth-generation wireless standard, it found itself with a commercial chip that had some of the most impressive flops/watt performance on the planet. And that got some of the folks at TI wondering if they could parlay that into the ethereal world of high performance computing.

Arnon Friedmann, TI’s Business Manager for Multicore DSP, and who now directs a budding HPC group at the company, says the effort to create a high performance computing presence with its latest DSP architecture is now underway, and there don’t appear to be any showstoppers. “There aren’t any doubts whether the device is capable of scaling to [HPC] products,” Friedmann told HPCwire. “It’s really just a matter of how well the applications can run on the device.”

According to Friedmann a “handful” of universities and commercial HPC customers have already expressed interest in the DSP technology and have been collaborating with engineers at TI to port their applications to the new DSP. “We’re also talking with a number of people who build HPC systems,” he says. “I wouldn’t say that you’re going to see anything immediately, but we’re getting quite a bit of interest.”

The DSP product line at the center of this effort is TI’s new TMS320C66x (aka C66x) series, a multicore chip they designed for 4G cellular base stations and radio network controllers. Launched in November 2010, the C66x is a 40nm chip that comes in single-core, dual-core, quad-core and eight-core variations. Its most distinguishing feature is the addition of floating point instructions, which were incorporated to support the more complex processing required for 4G wireless communications. The previous generation C64x series DSPs supported only fixed point math.

The C66x is implemented with TI’s new KeyStone architecture, which incorporates an eight-way VLIW architecture, a high-speed switch fabric called TeraNet, and a multicore navigator and DMA system that manages packet sending to other cores and peripherals. All the C66x products come with 512 KB of dedicated L2 cache per core, along with 32 KB of L1 cache for both instructions and data.

In its eight-core 1.25 GHz implementation, the C66x delivers 160 single precision (SP) gigaflops, while sucking up just 10 watts of power. That works out to an impressive 16 SP gigaflops/watt. Energy efficiency is a hallmark of DSPs, in general, since they typically populate systems (like the aforementioned cellular base station towers and radio network controllers), where power and cooling is in short supply.

The first HPC-friendly C66x-based device is a PCIe card, which sports four of the eight-core DSPs running at 1.0 GHz. Built by Advantech, a TI parter, the half-length PCIe card delivers 512 SP gigaflops at a modest 50 watts. On-board memory consists of 4 GB of 1333 MHz DDR3 RAM, with full ECC support. They’re also working on a full-length card, with eight DSPs, twice as much memory, and twice the performance.

Compared to the latest Tesla 20-series cards from NVIDIA, which delivers 1331 SP gigaflops at 225 watts, the Advantech hardware is the more impressive product, at least from a peak performance-per-watt perspective. The DSP-equipped card delivers 10 gigaflops/watt while the NVIDIA Tesla module puts out 6 gigaflops/watt. Those are for single precision flops. For double precision, the TI DSP delivers 3/8 of single precision performance, while the Tesla GPU delivers 1/2. In either case though, the TI DSP is the more energy efficient choice.

By the time the Kepler GPUs come out in 2012, and Intel’s first Many Integrated Core (MIC) coprocessor appears in 2013, those performance per watt numbers should be more competitive, but presumably TI can move its DSP performance up the ladder as well.

Like NVIDIA and Intel, Texas Instruments can leverage its volume position in a market much larger than HPC. In TI’s case, they expect to sell their C66x DSPs by the millions each year (as they did with the previous generation C64x line) in order to power the growing 4G wireless infrastructure. The company’s dominant position in that end of the market speaks well for the resources they could throw at this architecture.

The open question is how to do HPC-style software development on DSPs. The good news is that digital signal processors act more or less like a CPU. Unlike GPUs or FPGAs, the TI DSP doesn’t require a special programming language and doesn’t need a host processor to drive it. So the entire application can be run on the DSP, with nothing fancier than traditional C language tools, parallelized with OpenMP and/or MPI. TI offers all of this in its software development kit, including a C compiler, runtime, as well as the appropriate floating point math and parallel programming support. “We have a pretty good history of running complex systems on these DSPs,” says Friedmann.

The HPC group at TI they realize they will need to beef up their software tools to compete with the more mature parallel programming environments offered by Intel and NVIDIA. They’re even considering porting OpenCL to their DSP, but according to Friedmann, would like to see greater uptake in the community before they begin that effort. But their DSP compiler technology is mature, being based on a ten year-old VLIW architecture that has been refined over that period of time. The addition of floating point instructions entailed a relatively straightforward update to the base compiler, says Friedmann.

The new C66x DSPs are already being used in HPC-like workloads in a few specialized applications like semiconductor and LCD flat panel inspection systems. In the past, these set-ups employed hundreds of fixed-point DSPs, but with FP-capable parts now available, they can use fewer parts, and the applications are being updated accordingly. They are also seeing adoption in radar systems and medical imaging, which, again, can take advantage of the DSP’s new floating point prowess. In all of these cases, performance is a key element, since these applications rely on real time, compute-intensive processing.

Currently the company is in the process of running benchmarks against it new floating point processor to demonstrate the extent of its HPC potential. There may be certain types of algorithms that the DSP is particularly adept at. For example, running fast Fourier transforms (FFTs) on the C66x is about 8 to 10 times more efficient than using latest GPUs, according to Friedmann. Specific benchmark results will be forthcoming shortly.

The high performance computing effort at TI is still in its infancy as they learn how to navigate the HPC market and maneuver around established HPC players Intel, NVIDIA, and AMD. In the meantime, a team of 8 to 10 TI engineers has been keeping itself busy collecting applications from interested customers and helping to port and benchmark the codes. At SC11 next month, Friedmann will be demonstrating the DSP card and talking up the potential of the technology. “I do expect it’s going to get interesting in 2012,” says Friedmann.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This