Texas Instruments Makes HPC Play with New Multicore DSP Chips

By Michael Feldman

October 27, 2011

A funny thing happened on the way to 4G telecommunications. When Texas Instruments (TI) added floating point smarts to its new digital signal processor (DSP) to support the fourth-generation wireless standard, it found itself with a commercial chip that had some of the most impressive flops/watt performance on the planet. And that got some of the folks at TI wondering if they could parlay that into the ethereal world of high performance computing.

Arnon Friedmann, TI’s Business Manager for Multicore DSP, and who now directs a budding HPC group at the company, says the effort to create a high performance computing presence with its latest DSP architecture is now underway, and there don’t appear to be any showstoppers. “There aren’t any doubts whether the device is capable of scaling to [HPC] products,” Friedmann told HPCwire. “It’s really just a matter of how well the applications can run on the device.”

According to Friedmann a “handful” of universities and commercial HPC customers have already expressed interest in the DSP technology and have been collaborating with engineers at TI to port their applications to the new DSP. “We’re also talking with a number of people who build HPC systems,” he says. “I wouldn’t say that you’re going to see anything immediately, but we’re getting quite a bit of interest.”

The DSP product line at the center of this effort is TI’s new TMS320C66x (aka C66x) series, a multicore chip they designed for 4G cellular base stations and radio network controllers. Launched in November 2010, the C66x is a 40nm chip that comes in single-core, dual-core, quad-core and eight-core variations. Its most distinguishing feature is the addition of floating point instructions, which were incorporated to support the more complex processing required for 4G wireless communications. The previous generation C64x series DSPs supported only fixed point math.

The C66x is implemented with TI’s new KeyStone architecture, which incorporates an eight-way VLIW architecture, a high-speed switch fabric called TeraNet, and a multicore navigator and DMA system that manages packet sending to other cores and peripherals. All the C66x products come with 512 KB of dedicated L2 cache per core, along with 32 KB of L1 cache for both instructions and data.

In its eight-core 1.25 GHz implementation, the C66x delivers 160 single precision (SP) gigaflops, while sucking up just 10 watts of power. That works out to an impressive 16 SP gigaflops/watt. Energy efficiency is a hallmark of DSPs, in general, since they typically populate systems (like the aforementioned cellular base station towers and radio network controllers), where power and cooling is in short supply.

The first HPC-friendly C66x-based device is a PCIe card, which sports four of the eight-core DSPs running at 1.0 GHz. Built by Advantech, a TI parter, the half-length PCIe card delivers 512 SP gigaflops at a modest 50 watts. On-board memory consists of 4 GB of 1333 MHz DDR3 RAM, with full ECC support. They’re also working on a full-length card, with eight DSPs, twice as much memory, and twice the performance.

Compared to the latest Tesla 20-series cards from NVIDIA, which delivers 1331 SP gigaflops at 225 watts, the Advantech hardware is the more impressive product, at least from a peak performance-per-watt perspective. The DSP-equipped card delivers 10 gigaflops/watt while the NVIDIA Tesla module puts out 6 gigaflops/watt. Those are for single precision flops. For double precision, the TI DSP delivers 3/8 of single precision performance, while the Tesla GPU delivers 1/2. In either case though, the TI DSP is the more energy efficient choice.

By the time the Kepler GPUs come out in 2012, and Intel’s first Many Integrated Core (MIC) coprocessor appears in 2013, those performance per watt numbers should be more competitive, but presumably TI can move its DSP performance up the ladder as well.

Like NVIDIA and Intel, Texas Instruments can leverage its volume position in a market much larger than HPC. In TI’s case, they expect to sell their C66x DSPs by the millions each year (as they did with the previous generation C64x line) in order to power the growing 4G wireless infrastructure. The company’s dominant position in that end of the market speaks well for the resources they could throw at this architecture.

The open question is how to do HPC-style software development on DSPs. The good news is that digital signal processors act more or less like a CPU. Unlike GPUs or FPGAs, the TI DSP doesn’t require a special programming language and doesn’t need a host processor to drive it. So the entire application can be run on the DSP, with nothing fancier than traditional C language tools, parallelized with OpenMP and/or MPI. TI offers all of this in its software development kit, including a C compiler, runtime, as well as the appropriate floating point math and parallel programming support. “We have a pretty good history of running complex systems on these DSPs,” says Friedmann.

The HPC group at TI they realize they will need to beef up their software tools to compete with the more mature parallel programming environments offered by Intel and NVIDIA. They’re even considering porting OpenCL to their DSP, but according to Friedmann, would like to see greater uptake in the community before they begin that effort. But their DSP compiler technology is mature, being based on a ten year-old VLIW architecture that has been refined over that period of time. The addition of floating point instructions entailed a relatively straightforward update to the base compiler, says Friedmann.

The new C66x DSPs are already being used in HPC-like workloads in a few specialized applications like semiconductor and LCD flat panel inspection systems. In the past, these set-ups employed hundreds of fixed-point DSPs, but with FP-capable parts now available, they can use fewer parts, and the applications are being updated accordingly. They are also seeing adoption in radar systems and medical imaging, which, again, can take advantage of the DSP’s new floating point prowess. In all of these cases, performance is a key element, since these applications rely on real time, compute-intensive processing.

Currently the company is in the process of running benchmarks against it new floating point processor to demonstrate the extent of its HPC potential. There may be certain types of algorithms that the DSP is particularly adept at. For example, running fast Fourier transforms (FFTs) on the C66x is about 8 to 10 times more efficient than using latest GPUs, according to Friedmann. Specific benchmark results will be forthcoming shortly.

The high performance computing effort at TI is still in its infancy as they learn how to navigate the HPC market and maneuver around established HPC players Intel, NVIDIA, and AMD. In the meantime, a team of 8 to 10 TI engineers has been keeping itself busy collecting applications from interested customers and helping to port and benchmark the codes. At SC11 next month, Friedmann will be demonstrating the DSP card and talking up the potential of the technology. “I do expect it’s going to get interesting in 2012,” says Friedmann.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This