Texas Instruments Makes HPC Play with New Multicore DSP Chips

By Michael Feldman

October 27, 2011

A funny thing happened on the way to 4G telecommunications. When Texas Instruments (TI) added floating point smarts to its new digital signal processor (DSP) to support the fourth-generation wireless standard, it found itself with a commercial chip that had some of the most impressive flops/watt performance on the planet. And that got some of the folks at TI wondering if they could parlay that into the ethereal world of high performance computing.

Arnon Friedmann, TI’s Business Manager for Multicore DSP, and who now directs a budding HPC group at the company, says the effort to create a high performance computing presence with its latest DSP architecture is now underway, and there don’t appear to be any showstoppers. “There aren’t any doubts whether the device is capable of scaling to [HPC] products,” Friedmann told HPCwire. “It’s really just a matter of how well the applications can run on the device.”

According to Friedmann a “handful” of universities and commercial HPC customers have already expressed interest in the DSP technology and have been collaborating with engineers at TI to port their applications to the new DSP. “We’re also talking with a number of people who build HPC systems,” he says. “I wouldn’t say that you’re going to see anything immediately, but we’re getting quite a bit of interest.”

The DSP product line at the center of this effort is TI’s new TMS320C66x (aka C66x) series, a multicore chip they designed for 4G cellular base stations and radio network controllers. Launched in November 2010, the C66x is a 40nm chip that comes in single-core, dual-core, quad-core and eight-core variations. Its most distinguishing feature is the addition of floating point instructions, which were incorporated to support the more complex processing required for 4G wireless communications. The previous generation C64x series DSPs supported only fixed point math.

The C66x is implemented with TI’s new KeyStone architecture, which incorporates an eight-way VLIW architecture, a high-speed switch fabric called TeraNet, and a multicore navigator and DMA system that manages packet sending to other cores and peripherals. All the C66x products come with 512 KB of dedicated L2 cache per core, along with 32 KB of L1 cache for both instructions and data.

In its eight-core 1.25 GHz implementation, the C66x delivers 160 single precision (SP) gigaflops, while sucking up just 10 watts of power. That works out to an impressive 16 SP gigaflops/watt. Energy efficiency is a hallmark of DSPs, in general, since they typically populate systems (like the aforementioned cellular base station towers and radio network controllers), where power and cooling is in short supply.

The first HPC-friendly C66x-based device is a PCIe card, which sports four of the eight-core DSPs running at 1.0 GHz. Built by Advantech, a TI parter, the half-length PCIe card delivers 512 SP gigaflops at a modest 50 watts. On-board memory consists of 4 GB of 1333 MHz DDR3 RAM, with full ECC support. They’re also working on a full-length card, with eight DSPs, twice as much memory, and twice the performance.

Compared to the latest Tesla 20-series cards from NVIDIA, which delivers 1331 SP gigaflops at 225 watts, the Advantech hardware is the more impressive product, at least from a peak performance-per-watt perspective. The DSP-equipped card delivers 10 gigaflops/watt while the NVIDIA Tesla module puts out 6 gigaflops/watt. Those are for single precision flops. For double precision, the TI DSP delivers 3/8 of single precision performance, while the Tesla GPU delivers 1/2. In either case though, the TI DSP is the more energy efficient choice.

By the time the Kepler GPUs come out in 2012, and Intel’s first Many Integrated Core (MIC) coprocessor appears in 2013, those performance per watt numbers should be more competitive, but presumably TI can move its DSP performance up the ladder as well.

Like NVIDIA and Intel, Texas Instruments can leverage its volume position in a market much larger than HPC. In TI’s case, they expect to sell their C66x DSPs by the millions each year (as they did with the previous generation C64x line) in order to power the growing 4G wireless infrastructure. The company’s dominant position in that end of the market speaks well for the resources they could throw at this architecture.

The open question is how to do HPC-style software development on DSPs. The good news is that digital signal processors act more or less like a CPU. Unlike GPUs or FPGAs, the TI DSP doesn’t require a special programming language and doesn’t need a host processor to drive it. So the entire application can be run on the DSP, with nothing fancier than traditional C language tools, parallelized with OpenMP and/or MPI. TI offers all of this in its software development kit, including a C compiler, runtime, as well as the appropriate floating point math and parallel programming support. “We have a pretty good history of running complex systems on these DSPs,” says Friedmann.

The HPC group at TI they realize they will need to beef up their software tools to compete with the more mature parallel programming environments offered by Intel and NVIDIA. They’re even considering porting OpenCL to their DSP, but according to Friedmann, would like to see greater uptake in the community before they begin that effort. But their DSP compiler technology is mature, being based on a ten year-old VLIW architecture that has been refined over that period of time. The addition of floating point instructions entailed a relatively straightforward update to the base compiler, says Friedmann.

The new C66x DSPs are already being used in HPC-like workloads in a few specialized applications like semiconductor and LCD flat panel inspection systems. In the past, these set-ups employed hundreds of fixed-point DSPs, but with FP-capable parts now available, they can use fewer parts, and the applications are being updated accordingly. They are also seeing adoption in radar systems and medical imaging, which, again, can take advantage of the DSP’s new floating point prowess. In all of these cases, performance is a key element, since these applications rely on real time, compute-intensive processing.

Currently the company is in the process of running benchmarks against it new floating point processor to demonstrate the extent of its HPC potential. There may be certain types of algorithms that the DSP is particularly adept at. For example, running fast Fourier transforms (FFTs) on the C66x is about 8 to 10 times more efficient than using latest GPUs, according to Friedmann. Specific benchmark results will be forthcoming shortly.

The high performance computing effort at TI is still in its infancy as they learn how to navigate the HPC market and maneuver around established HPC players Intel, NVIDIA, and AMD. In the meantime, a team of 8 to 10 TI engineers has been keeping itself busy collecting applications from interested customers and helping to port and benchmark the codes. At SC11 next month, Friedmann will be demonstrating the DSP card and talking up the potential of the technology. “I do expect it’s going to get interesting in 2012,” says Friedmann.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Battle Brews over Trump Intentions for Funding Science

February 27, 2017

The battle over science funding – how much and for what kinds of science – Read more…

By John Russell

Google Gets First Dibs on New Skylake Chips

February 27, 2017

As part of an ongoing effort to differentiate its public cloud services, Google made good this week on its intention to bring custom Xeon Skylake chips from Intel Corp. Read more…

By George Leopold

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPE Extreme Performance Solutions

Manufacturers Reaping the Benefits of Remote Visualization

Today’s manufacturers are operating in an ever-changing atmosphere, and finding new ways to boost productivity has never been more vital.

This is why manufacturers are ramping up their investments in high performance computing (HPC), a trend which has helped give rise to the “connected factory” and Industrial Internet of Things (IIoT) concepts that are proliferating throughout the industry today. Read more…

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

Thomas Sterling on CREST and Academia’s Role in HPC Research

February 27, 2017

The US advances in high performance computing over many decades have been a product of the combined engagement of research centers in industry, government labs, and academia. Read more…

By Thomas Sterling, Indiana University

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This