China’s Indigenous Supercomputing Strategy Bears First Fruit

By Michael Feldman

November 1, 2011

If anyone wasn’t taking China seriously as a contender for supercomputing supremacy, such doubts should have been dispelled last week when the New York Times reported that the nation has deployed its first petascale supercomputer built with domestically produced CPUs. And it’s not just the processors that were homegrown. Based on a presentation delivered last month at the China’s Annual Meeting of National High Performance Computing, most of major components of the new machine were designed and built with native engineering, including the liquid cooling technology, the system network, and the software stack.

As we recapped last week, the Sunway BlueLight MPP, installed in September at the National Supercomputer Center in Jinan, is being powered by 8,704 ShenWei SW1600 processors. The resulting machine delivers just a over a petaflop of performance, with a Linpack rating of 796 teraflops. That will probably place it somewhere between 15th and 20th place on the upcoming TOP500 list, assuming the engineers at Jinan sent their submission in on time.

Impressively, its power consumption of just one megawatt will make it one of the more power-efficient of CPU-only supercomputers in the work. Running Linpack, BlueLight delivers 741 megaflops/watt, which would place it in the top ten of the current Green500, a list that ranks the energy efficiency of supercomputers.

Perhaps even more impressively, this was all accomplished with CPUs built on 65nm process technology, which is two generations behind what can be had at most of the major fabs today. According to the presentation last week, the domestic ShenWei chip is a 16-core, 64-bit RISC processor running between 0.975 – 1.2 GHz. Assuming a frequency of 1.1 GHz, the CPU will can deliver a peak double precision floating point performance of 140.8 gigaflops. Note that if the 8,704 CPUs were running at that speed, the machine would actually deliver 1.2 peak petaflops, not the claimed 1.07 petaflops. Apparently the supercomputer is equipped with processors clocked at the lower end of their frequency range.

Digging a little deeper into the specs, the CPU is a four-issue superscalar design with two integer and two floating-point execution units. The integer unit has a 7-stage pipeline, while the floating point unit is implemented as a 10-stage pipeline. The system bus is 128 bits wide.

As is the case with most CPUs nowadays, the chip contains an integrated DDR3 memory controller. It feeds the 16 cores at a rate of up to 68 GB/second, using four memory channels. Each of the machine’s CPUs is directly connected to 16 GB of memory, although the ShenWei’s maximum memory reach is a whopping 1 TB (and 8 TB for virtual memory).

The chip also contains Level 1 and Level 2 caches — 8 KB each of instruction and data for L1, and 96 KB for L2. Those are rather small by modern CPU standards, but considering the relatively large geometries of 65nm transistors, there probably wasn’t room for both large caches and lots of cores. In this case, the chip architects opted to maximize core count.

Design of the ShenWei microprocessors is being attributed to the Jiangnán Computing Research Lab, with support from the Shandong government. The chips themselves are being fabbed by “a company in Shanghai,” which plans to moves from the current 65nm process node to 45nm. According to the Wikipedia entry on the ShenWei, this is the third generation of the architecture.

The CPUs are rather densely packed in the BlueLight system. Each 1U box crams together four dual-socket motherboards, which is about two to four times the density of a typical design. Normally that would make for an uncomfortably hot enclosure, so to compensate, the system is entirely water cooled. From the pictures in the presentation, it looks like piped liquid is run through the motherboard to maximize heat dissipation.

Each node — what they refer to as a super node — consist of 256 CPUs (4,096 cores) and 4 TB of memory, providing 32.7 teraflops of peak performance. Intra-node communication is supported by a high-speed backplane, which delivers 1 terabyte/second of bandwidth.

The system network is the most conventional part of the machine, being based on QDR InfiniBand. In this case, the engineers built custom-made 256- and 324-port switches, and outfitted the connections with optical fiber. The network is a fat-tree topology and is designed for optimized routing as well as dynamic fault tolerance. It’s not clear if Mellanox or QLogic components are in the mix here, but no mention was made of third-party switch ASICs or NICs.

The software stack is attributed to Sunway, which has provided the “virtualization” management, a parallel operating system, the parallel file system, the compiler for the ShenWei CPUs, multicore math libraries, and a Java support platform. Compiler support includes the usual suspects: C, C++, and Fortran, as well as UPC and OpenMP. The requisite MPI library rounds out the software stack.

With the ShenWei CPU, China has begun the process of edging out foreign-built processors with its own designs. The BlueLight machine first supercomputer on China’s TOP100 list with homegrown CPUs. At it stands now, 85 of those systems use Intel processors, with the remaining 14 using AMD parts. It’s clearly China’s intent to reduce, or perhaps even eliminate entirely, its dependence on processors designed outside its borders — at least for its HPC needs.

In aggregate, the Chinese have built a what appears to be world-class supercomputer, designed and built without the help of any US-based chipmakers or system vendors. The Japanese, of course, accomplish this a fairly regular basis, the latest example being the K supercomputer at RIKEN. By contrast, Europe possesses only an incomplete domestic HPC industry, with system vendors like Bull relying on exogenous CPUs, interconnects, and other components. For China, a relative newcomer to the world of high-end HPC, designing and building a domestic supercomputer is a major achievement.

Should vendors be worried? Certainly chipmakers like Intel, AMD, and NVIDIA should view this development with some trepidation. Likewise for HPC system vendors such as IBM, HP, Dell and others. China is a large and growing market for high performance computing infrastructure, and if they decide to take a homegrown approach to HPC technology, that could translate into hundreds of millions of dollars per year in lost revenue for these US-based companies.

As far as the broader picture of US (and European) competitiveness in HPC capability, there is also reason for concern. A number of industry insiders believe the Chinese are determined to beat the US and other nations in the race to exaflops. Convey co-founder and chief scientist Steve Wallach is one such individual. According to him, the dense packaging, impressive performance per watt metrics, and water cooled technology of the BlueLight system are signs of serious engineering prowess on the part of the Chinese engineers.

“This is ground-up design,” Wallach told HPCwire. “They own the technology, and that’s the key.”

More importantly, he believes the technology can scale more easily than mainstream products being offered in HPC today. In particular, if the Chinese catch up (or outsource) to more advanced fab technology, the ShenWei processors could be quite formidable. According to him, compared to a 65nm die, 32nm technology would provide four times the available silicon real estate, freeing the ShenWei designers to add more cache — something Wallach believes is a weakness in the current design.

A more obvious advantage is that, rather than relying on commodity processors and commercial clusters, the Chinese government seems willing to develop processors and systems targeted specifically to HPC. The Japanese government has done this to some extent with the aforementioned K machine and the NEC vector machines, but in the US and Europe, there is no direct government support to fund HPC processors, and only piecemeal support from various agencies to design and build advanced supercomputing systems.

In that sense, the Chinese can exploit their considerable financial resources to outrun the competition if they choose to do so. And if the new ShenWei processor and the BlueLight system is an indication of a systematic strategy, then the Chinese have already made that choice.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket for an optional 8087 math coprocessor. The math coprocessor ma Read more…

IonQ Reports Advance on Path to Networked Quantum Computing

February 22, 2024

IonQ reported reaching a milestone in its efforts to use entangled photon-ion connectivity to scale its quantum computers. IonQ’s quantum computers are based on trapped ions which feature long coherence times and qubit Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Apple. Today the consumer electronics giant started rolling Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to derive any substantial value from it. However, the GenAI hyp Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performance Benchmarks – that builds on earlier work and is an eff Read more…

AWS Solution Channel

Shutterstock 2283618597

Deep-dive into Ansys Fluent performance on Ansys Gateway powered by AWS

Today, we’re going to deep-dive into the performance and associated cost of running computational fluid dynamics (CFD) simulations on AWS using Ansys Fluent through the Ansys Gateway powered by AWS (or just “Ansys Gateway” for the rest of this post). Read more…

Atom Computing Reports Advance in Scaling Up Neutral Atom Qubit Arrays

February 15, 2024

The scale-up challenge facing quantum computing (QC) is daunting and varied. It’s commonly held that 1 million qubits (or more) will be needed to deliver practical fault tolerant QC. It’s also a varied challenge beca Read more…

A Big Memory Nvidia GH200 Next to Your Desk: Closer Than You Think

February 22, 2024

Students of the microprocessor may recall that the original 8086/8088 processors did not have floating point units. The motherboard often had an extra socket fo Read more…

Apple Rolls out Post Quantum Security for iOS

February 21, 2024

Think implementing so-called Post Quantum Cryptography (PQC) isn't important because quantum computers able to decrypt current RSA codes don’t yet exist? Not Read more…

QED-C Issues New Quantum Benchmarking Paper

February 20, 2024

The Quantum Economic Development Consortium last week released a new paper on benchmarking – Quantum Algorithm Exploration using Application-Oriented Performa Read more…

The Pulse of HPC: Tracking 4.5 Million Heartbeats of 3D Coronary Flow

February 15, 2024

Working in Duke University's Randles Lab, Cyrus Tanade, a National Science Foundation graduate student fellow and Ph.D. candidate in biomedical engineering, is Read more…

It Doesn’t Get Much SWEETER: The Winter HPC Computing Festival in Corpus Christi

February 14, 2024

(Main Photo by Visit Corpus Christi CrowdRiff) Texas A&M University's High-Performance Research Computing (HPRC) team hosted the "SWEETER Winter Comput Read more…

Q-Roundup: Diraq’s War Chest, DARPA’s Bet on Topological Qubits, Citi/Classiq Explore Optimization, WEF’s Quantum Blueprint

February 13, 2024

Yesterday, Australian start-up Diraq added $15 million to its war chest (now $120 million) to build a fault tolerant computer based on quantum dots. Last week D Read more…

2024 Winter Classic: Razor Thin Margins in HPL/HPCG

February 12, 2024

The first task for the 11 teams in the 2024 Winter Classic student cluster competition was to run and optimize the LINPACK and HPCG benchmarks. As usual, the Read more…

2024 Winter Classic: We’re Back!

February 9, 2024

The fourth edition of the Winter Classic Invitational Student Cluster Competition is up and running. This year, we have 11 teams of eager students representin Read more…

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

Leading Solution Providers

Contributors

CORNELL I-WAY DEMONSTRATION PITS PARASITE AGAINST VICTIM

October 6, 1995

Ithaca, NY --Visitors to this year's Supercomputing '95 (SC'95) conference will witness a life-and-death struggle between parasite and victim, using virtual Read more…

SGI POWERS VIRTUAL OPERATING ROOM USED IN SURGEON TRAINING

October 6, 1995

Surgery simulations to date have largely been created through the development of dedicated applications requiring considerable programming and computer graphi Read more…

U.S. Will Relax Export Restrictions on Supercomputers

October 6, 1995

New York, NY -- U.S. President Bill Clinton has announced that he will definitely relax restrictions on exports of high-performance computers, giving a boost Read more…

Dutch HPC Center Will Have 20 GFlop, 76-Node SP2 Online by 1996

October 6, 1995

Amsterdam, the Netherlands -- SARA, (Stichting Academisch Rekencentrum Amsterdam), Academic Computing Services of Amsterdam recently announced that it has pur Read more…

Cray Delivers J916 Compact Supercomputer to Solvay Chemical

October 6, 1995

Eagan, Minn. -- Cray Research Inc. has delivered a Cray J916 low-cost compact supercomputer and Cray's UniChem client/server computational chemistry software Read more…

NEC Laboratory Reviews First Year of Cooperative Projects

October 6, 1995

Sankt Augustin, Germany -- NEC C&C (Computers and Communication) Research Laboratory at the GMD Technopark has wrapped up its first year of operation. Read more…

Sun and Sybase Say SQL Server 11 Benchmarks at 4544.60 tpmC

October 6, 1995

Mountain View, Calif. -- Sun Microsystems, Inc. and Sybase, Inc. recently announced the first benchmark results for SQL Server 11. The result represents a n Read more…

New Study Says Parallel Processing Market Will Reach $14B in 1999

October 6, 1995

Mountain View, Calif. -- A study by the Palo Alto Management Group (PAMG) indicates the market for parallel processing systems will increase at more than 4 Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire