Intel Debuts New HPC Cluster Tool Suite

By Michael Feldman

November 8, 2011

This week Intel unveiled its upmarket version of its Cluster Studio offering aimed at performance-minded MPI application developers. Called Cluster Studio XE, the jazzed-up developer suite adds Intel analysis tools to make it easier for programmers to optimize and tune codes for maximum performance. It also includes the latest compilers, runtimes, and MPI library to keep pace with the new developments in parallel programming.

Intel Cluster Studio, which used to be sold as Cluster Toolkit, includes the same set of C/C++ and Fortran compilers as Intel’s Parallel Studio product, but also comes with MPI support for HPC cluster programmers. These include Intel’s own MPI library and the Trace Analyzer and Collector. The latter is used for visualizing MPI communications and load balancing to help developers test and tune their cluster applications

In addition, Cluster Studio includes the usual Intel smorgasbord of its parallel language frameworks, including Cilk Plus, Threading Building Blocks (TBB), OpenCL, and OpenMP. The only significant tool missing in the suite is a debugger. But since the Intel tools are compatible with Rogue Waves’s TotalView debugger as well as Allinea’s DDT, developers needn’t go without.

The big additions to the XE version of Cluster studio are a couple of performance tools: VTune Amplifier XE and Inspector XE, both of which operate in the shared memory environment at the node level. One might wonder why node-level tools have been included in the cluster toolset at all, but according to James Reinders, who directs Intel’s software group, more and more cluster codes are moving toward a hybrid MPI/OpenMP (distributed/shared memory) programming model, which makes the multithreaded behavior in the node level critical to performance. Reinders says that as the compute nodes have gotten fatter, it’s more important know what’s going on inside the nodes.

The trend he’s referring to is the increasing number of cores one can obtain in single node. Using the latest x86 chips, even a standard dual-socket box can house 16 cores (32 threads) with the new Xeon E5 chip or 32 cores in the case of AMD’s Opteron 6200. And if Intel has it’s way, HPC nodes will soon come equipped with its upcoming Many Integrated Core (MIC) coprocessors, which will triple or perhaps quadruple that core count. Whether its MICs, GPUs, or just straight CPUs, core counts appear to be on an upward trajectory that will be expanding the waistline of HPC nodes for the foreseeable future. “It’s like an obesity epidemic in computers,” says Reinders.

In a nutshell, that’s the rationale for including the shared-memory tools. For example, VTune Amplifier XE, which already comes standard in the Parallel Studio XE suite, enables developers to look at thread behavior on the nodes. The tool allows them to pinpoint bottlenecks due to idle cores or non-optimal cache usage. It also finds hotspots where the code is spending large amounts of time.

The second tool included in Cluster Studio XE is Inspector XE (formerly known as Thread Checker), which, again is directed at optimized application execution on the node, in this case, checking for thread and memory correctness. Specifically, Inspector can find instances of memory leaks, race conditions and potential deadlocks. This is not so much a performance issue as one of application robustness, enabling developers to detect latent errors in the code, even when the defect is not apparent in most runtime scenarios.

Although Both VTune Amplifier and Inspector XE operate at the node level, each has been extended to work in an distributed MPI model. Essentially, the tools collect their data at the node level, but the results are aggregated and organized on based on MPI rank (process ID), which allows the developers to see the analysis in context to the overall operation of the program.

Of course, if the programmer wanted to do this type of analysis before, he could have purchased the standalone tools separately and extracted the data on a node-by-node basis. But that’s a rather painful process once you get beyond a handful of servers. According to Reinders, users wanted to visualize the behavior in these nodes as part of the whole picture across the cluster.

At the same time that nodes are getting fatter, the number of nodes is still increasing. This is reflected in the TOP500 computers’ aggregate performance, which is growing at twice the rate of Moore’s Law. To keep pace with the growth of scale-out clusters, Intel engineers have been busy tweaking their MPI library.

According to Reinders, their latest MPI library, version 4.0, can now scale beyond 90,000 processes, which is quite a bit better than was supported just a year ago. The better scaling is the result of enhancements to MPICH2, which is used as a foundation for Intel’s MPI offering, as well as some custom tuning.

Intel also claims industry-leading performance for its latest library. According to latency tests for a 96-process application running on a 8-node machine, the Intel implementation delivers better performance than other leading MPI libraries, such as Microsoft MPI 3.2, Platform MPI 8.1.1, MVAPICH 1.6, and OpenMPI 1.5.4.

The differences tended to be largest when compared to the open source OpenMPI package. In one case, the Intel implementation was 2.6 times as fast. “OpenMPI is very popular and I think a lot of users don’t understand how much performance they’re giving up by not going to one of the commercial MPI libraries,” says Reinders. Intel’s MPI library is also fabric independent, making it a popular choice with ISVs, who want to minimize the number of shipping binaries corresponding to each interconnect fabric they support.

Like all of Intel’s parallel tool suites, Cluster Studio XE is designed to work across its own multicore x86 CPU products as well as those of AMD’s. The company is now in the process of extending these tools to support manycore, and for Intel that means their upcoming Many Integrated Core (MIC) product. Reinders says almost all these tools have versions that support the MIC prototype (Knights Ferry) today, although some of the MPI tools are not as fully developed as they are for the compilers and runtimes. When they do launch the production Knights Corner MIC product a year or so from now, all of these parallel tools will support the manycore architecture in a more or less transparent fashion.

Cluster Studio XE is sold by developer seat, and is priced according to OS support: $2,849 for the Window version; $2,499 for the Linux one. Those prices are $1,000 more per seat than the vanilla Cluster Studio without the performance tools. Of course, Intel would love upsell all their customers to the XE level, but Reinders admits that not all developers will want or need this extra functionality. In general, only the performance gurus who perform code tuning across the application will be interested in the premier XE package. Says Reinders: “Those people need to have these tools in their hands, and I think they’ll find great results with them.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

Imagine if all the atoms in the universe could be added up into a single number. Big number, right? Maybe the biggest number conceivable. But wait, there’s a bigger number out there. We're told that Go, the world’s Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

Imagine if all the atoms in the universe could be added up into a single number. Big number, right? Maybe the biggest number conceivable. But wait, there’s a Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This