Intel Debuts New HPC Cluster Tool Suite

By Michael Feldman

November 8, 2011

This week Intel unveiled its upmarket version of its Cluster Studio offering aimed at performance-minded MPI application developers. Called Cluster Studio XE, the jazzed-up developer suite adds Intel analysis tools to make it easier for programmers to optimize and tune codes for maximum performance. It also includes the latest compilers, runtimes, and MPI library to keep pace with the new developments in parallel programming.

Intel Cluster Studio, which used to be sold as Cluster Toolkit, includes the same set of C/C++ and Fortran compilers as Intel’s Parallel Studio product, but also comes with MPI support for HPC cluster programmers. These include Intel’s own MPI library and the Trace Analyzer and Collector. The latter is used for visualizing MPI communications and load balancing to help developers test and tune their cluster applications

In addition, Cluster Studio includes the usual Intel smorgasbord of its parallel language frameworks, including Cilk Plus, Threading Building Blocks (TBB), OpenCL, and OpenMP. The only significant tool missing in the suite is a debugger. But since the Intel tools are compatible with Rogue Waves’s TotalView debugger as well as Allinea’s DDT, developers needn’t go without.

The big additions to the XE version of Cluster studio are a couple of performance tools: VTune Amplifier XE and Inspector XE, both of which operate in the shared memory environment at the node level. One might wonder why node-level tools have been included in the cluster toolset at all, but according to James Reinders, who directs Intel’s software group, more and more cluster codes are moving toward a hybrid MPI/OpenMP (distributed/shared memory) programming model, which makes the multithreaded behavior in the node level critical to performance. Reinders says that as the compute nodes have gotten fatter, it’s more important know what’s going on inside the nodes.

The trend he’s referring to is the increasing number of cores one can obtain in single node. Using the latest x86 chips, even a standard dual-socket box can house 16 cores (32 threads) with the new Xeon E5 chip or 32 cores in the case of AMD’s Opteron 6200. And if Intel has it’s way, HPC nodes will soon come equipped with its upcoming Many Integrated Core (MIC) coprocessors, which will triple or perhaps quadruple that core count. Whether its MICs, GPUs, or just straight CPUs, core counts appear to be on an upward trajectory that will be expanding the waistline of HPC nodes for the foreseeable future. “It’s like an obesity epidemic in computers,” says Reinders.

In a nutshell, that’s the rationale for including the shared-memory tools. For example, VTune Amplifier XE, which already comes standard in the Parallel Studio XE suite, enables developers to look at thread behavior on the nodes. The tool allows them to pinpoint bottlenecks due to idle cores or non-optimal cache usage. It also finds hotspots where the code is spending large amounts of time.

The second tool included in Cluster Studio XE is Inspector XE (formerly known as Thread Checker), which, again is directed at optimized application execution on the node, in this case, checking for thread and memory correctness. Specifically, Inspector can find instances of memory leaks, race conditions and potential deadlocks. This is not so much a performance issue as one of application robustness, enabling developers to detect latent errors in the code, even when the defect is not apparent in most runtime scenarios.

Although Both VTune Amplifier and Inspector XE operate at the node level, each has been extended to work in an distributed MPI model. Essentially, the tools collect their data at the node level, but the results are aggregated and organized on based on MPI rank (process ID), which allows the developers to see the analysis in context to the overall operation of the program.

Of course, if the programmer wanted to do this type of analysis before, he could have purchased the standalone tools separately and extracted the data on a node-by-node basis. But that’s a rather painful process once you get beyond a handful of servers. According to Reinders, users wanted to visualize the behavior in these nodes as part of the whole picture across the cluster.

At the same time that nodes are getting fatter, the number of nodes is still increasing. This is reflected in the TOP500 computers’ aggregate performance, which is growing at twice the rate of Moore’s Law. To keep pace with the growth of scale-out clusters, Intel engineers have been busy tweaking their MPI library.

According to Reinders, their latest MPI library, version 4.0, can now scale beyond 90,000 processes, which is quite a bit better than was supported just a year ago. The better scaling is the result of enhancements to MPICH2, which is used as a foundation for Intel’s MPI offering, as well as some custom tuning.

Intel also claims industry-leading performance for its latest library. According to latency tests for a 96-process application running on a 8-node machine, the Intel implementation delivers better performance than other leading MPI libraries, such as Microsoft MPI 3.2, Platform MPI 8.1.1, MVAPICH 1.6, and OpenMPI 1.5.4.

The differences tended to be largest when compared to the open source OpenMPI package. In one case, the Intel implementation was 2.6 times as fast. “OpenMPI is very popular and I think a lot of users don’t understand how much performance they’re giving up by not going to one of the commercial MPI libraries,” says Reinders. Intel’s MPI library is also fabric independent, making it a popular choice with ISVs, who want to minimize the number of shipping binaries corresponding to each interconnect fabric they support.

Like all of Intel’s parallel tool suites, Cluster Studio XE is designed to work across its own multicore x86 CPU products as well as those of AMD’s. The company is now in the process of extending these tools to support manycore, and for Intel that means their upcoming Many Integrated Core (MIC) product. Reinders says almost all these tools have versions that support the MIC prototype (Knights Ferry) today, although some of the MPI tools are not as fully developed as they are for the compilers and runtimes. When they do launch the production Knights Corner MIC product a year or so from now, all of these parallel tools will support the manycore architecture in a more or less transparent fashion.

Cluster Studio XE is sold by developer seat, and is priced according to OS support: $2,849 for the Window version; $2,499 for the Linux one. Those prices are $1,000 more per seat than the vanilla Cluster Studio without the performance tools. Of course, Intel would love upsell all their customers to the XE level, but Reinders admits that not all developers will want or need this extra functionality. In general, only the performance gurus who perform code tuning across the application will be interested in the premier XE package. Says Reinders: “Those people need to have these tools in their hands, and I think they’ll find great results with them.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is built to run artificial intelligence (AI) workloads and, as Read more…

By Tiffany Trader

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

AI-Focused ‘Genius’ Supercomputer Installed at KU Leuven

April 24, 2018

Hewlett Packard Enterprise has deployed a new approximately half-petaflops supercomputer, named Genius, at Flemish research university KU Leuven. The system is Read more…

By Tiffany Trader

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Leading Solution Providers

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This