SGI Unveils Faster, Denser ICE Machine for Supercomputing

By Michael Feldman

November 14, 2011

Supercomputer maker SGI has launched its next generation ICE supercomputer, the company’s flagship scale-out HPC cluster platform. Using Intel’s latest Xeon processors, ICE-X is up to two and half times as dense and twice as fast as the current ICE 8400 system. “We expect to extend our share in the large-scale cluster market significantly with the new SGI ICE X, as it is designed for scale, speed and density,” said SGI CEO Mark J. Barrenechea, in a press announcement released on Monday.

According to Paul Kinyon, SGI’s director of product marketing for the scale out server business, the new ICE-X, which is codenamed “Carlsbad 3.0,” represents the largest performance boost in the company’s five generations of ICE machines. Most of this is due to the newest crop of x86 CPUs and InfiniBand parts. Specifically, the initial products will be powered by Intel’s upcoming Sandy Bridge Xeon CPUs, the 8-core Xeon E5s, and employ the latest and greatest FDR (Fourteen Data Rate) InfiniBand technology.

But, said Kinyon, much of the engineering effort was directed at optimizing density and cooling for the platform. In the most compact configuration offered, a single rack can house 288 CPUs, or 2,304 cores. Depending on the specific configuration and wattage on the selected Xeon parts, traditional air-cooled heat sinks or liquid cold sinks are employed.

The system design is modular, based on a 9.5U enclosure. Each one can house 18 blades slots (more about what that entails in a moment) and two InfiniBand switches. (The switch is an SGI custom job, employing Mellanox’s 36-port FDR InfiniBand ASIC.) Two enclosures are paired together, with a power supply shelf sandwiched between them, to make a 21U building block. Two of these building blocks can be stacked into a standard-height 42U rack.

As far as the blade themselves, they come in a couple of models: a single-node board (Dakota) or the double-node twin blade (Gemini). In both versions, each node is a dual-socket board with an attached mezzanine board that holds the FDR InfiniBand adapter, in this case, a Mellanox ConnectX-3 HCA. The mezzanine is connected to the main board with PCIe Gen 3 links, which is necessary if the FDR adapter is to run at its full 56 Gbps speed. Since the Xeon E5 processor has PCIe Gen 3 support built-in as well, all the componentry will support FDR, and eventually EDR.

The main difference between the blades is that Dakota can support up to eight DIMMs per socket and has three InfiniBand mezzanine board options (single-port, dual-port, and dual single-port), while the Gemini blade supports only four DIMMs and offers just the dual single-port InfiniBand mezzanine board. Essentially the denser twin blade offers twice the compute, but trades off memory capacity and some flexibility on the InfiniBand interconnect.

At the rack level, SGI offers two flavors (and widths) : the 24-inch D-rack and the 28-inch M-rack. The D-rack is the less dense version and can only house the Dakota blades. It maxes out at 144 sockets. The M-Rack can take either the Dakota or Gemini blades, and with the latter can hold 288 sockets. For comparison, the current ICE 8400 rack tops out at 128 sockets and is a couple of inches wider than the M-Rack.

Cooling defaults to the air-cooled heat sinks, until you get to the Gemini twin blade, where the cold sinks are used if you start outfitting those denser blades with the top-end Xeon CPUs. At the time of this writing, Intel has not revealed the speeds and feeds on the Xeon E5 processors line, so all Kinyon could say was that they will support the whole range of E5 SKUs up to and including the fastest (and hottest) 130 watt CPUs. In general, anything over 95 watts is in need of a cold sink, which sits right on the processor.

SGI also supports a memory subsystem as befitting an HPC machine, in this case, DDR3 DIMMs running at 1600 memory transfers/second. When you have 16 DIMMs per node, as is possible with the Dakota blade, that translates into a lot of aggregate bandwidth. “In HPC, memory bandwidth is king,” said Kinyon, “so the ability to have more DIMMs running at the highest frequency possible is a big deal.”

The only down side to all this dense packaging is that there really is no space for external PCIe slots to add, say, a GPU or flash memory card (although a SATA drive slot is available to hold an SSD). Kinyon said there is a way to hook up GPUs, but it must be done externally with what SGI calls “specialty nodes.” The advantage here, he said, is that the GPU to CPU mix is much more flexible and dynamic.

Although ICE-X scales up into the tens of petaflops realm, customers can buy much smaller systems, down into the tens of teraflops. In fact, existing customers can add ICE-X racks to their older ICE machines with relative ease. One such customer is NASA, owners of the 1.35-petaflop Pleiades supercomputer, which is already the largest SGI ICE cluster in the world.

The plan is to add 1,700 ICE-X nodes on top of the existing Pleiades system, which currently has of two generations of ICE gear. Thanks to the hypercube InfiniBand topology of Pleiades, SGI can upgrade the system while it’s running, with no downtime for users. Kinyon said you just bolt it together, cable it up, and the system management software will automatically bring the new nodes into the cluster.

The additional ICE-X nodes will bump Pleiades’ peak performance by about 575 teraflops, but since a couple of hundred teraflops of the older, slower servers will be removed (due to space considerations), the space agency will end up with about 1.7 petaflops. The upgrade is slated to be complete by early 2012.

Not all ICE-X configurations will be available by then, however. The Dakota blade will ship in late Q4 and the Gemini blade will be available a few months after that, in the first quarter of 2012. Some of the cooling options and InfiniBand mezzanine boards won’t ship until the first quarter of next year, and in the case of the cold sink, the second quarter.

Beyond that, future ICE systems will be on a two-year cadence. The next iteration, codenamed Carlsbad 4, is tentatively slated for 2013 and will support EDR InfiniBand. Carlsbad 5 is due in 2015 and will use whatever InfiniBand generation is ready in that timeframe. CPUs and memory technology will move up accordingly with each new generation.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion XL — were added to the benchmark suite as MLPerf continues Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing power it brings to artificial intelligence.  Nvidia's DGX Read more…

Call for Participation in Workshop on Potential NSF CISE Quantum Initiative

March 26, 2024

Editor’s Note: Next month there will be a workshop to discuss what a quantum initiative led by NSF’s Computer, Information Science and Engineering (CISE) directorate could entail. The details are posted below in a Ca Read more…

Waseda U. Researchers Reports New Quantum Algorithm for Speeding Optimization

March 25, 2024

Optimization problems cover a wide range of applications and are often cited as good candidates for quantum computing. However, the execution time for constrained combinatorial optimization applications on quantum device Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at the network layer threatens to make bigger and brawnier pro Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HBM3E memory as well as the the ability to train 1 trillion pa Read more…

MLPerf Inference 4.0 Results Showcase GenAI; Nvidia Still Dominates

March 28, 2024

There were no startling surprises in the latest MLPerf Inference benchmark (4.0) results released yesterday. Two new workloads — Llama 2 and Stable Diffusion Read more…

Q&A with Nvidia’s Chief of DGX Systems on the DGX-GB200 Rack-scale System

March 27, 2024

Pictures of Nvidia's new flagship mega-server, the DGX GB200, on the GTC show floor got favorable reactions on social media for the sheer amount of computing po Read more…

NVLink: Faster Interconnects and Switches to Help Relieve Data Bottlenecks

March 25, 2024

Nvidia’s new Blackwell architecture may have stolen the show this week at the GPU Technology Conference in San Jose, California. But an emerging bottleneck at Read more…

Who is David Blackwell?

March 22, 2024

During GTC24, co-founder and president of NVIDIA Jensen Huang unveiled the Blackwell GPU. This GPU itself is heavily optimized for AI work, boasting 192GB of HB Read more…

Nvidia Looks to Accelerate GenAI Adoption with NIM

March 19, 2024

Today at the GPU Technology Conference, Nvidia launched a new offering aimed at helping customers quickly deploy their generative AI applications in a secure, s Read more…

The Generative AI Future Is Now, Nvidia’s Huang Says

March 19, 2024

We are in the early days of a transformative shift in how business gets done thanks to the advent of generative AI, according to Nvidia CEO and cofounder Jensen Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Nvidia Showcases Quantum Cloud, Expanding Quantum Portfolio at GTC24

March 18, 2024

Nvidia’s barrage of quantum news at GTC24 this week includes new products, signature collaborations, and a new Nvidia Quantum Cloud for quantum developers. Wh Read more…

Alibaba Shuts Down its Quantum Computing Effort

November 30, 2023

In case you missed it, China’s e-commerce giant Alibaba has shut down its quantum computing research effort. It’s not entirely clear what drove the change. Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Leading Solution Providers

Contributors

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

Google Introduces ‘Hypercomputer’ to Its AI Infrastructure

December 11, 2023

Google ran out of monikers to describe its new AI system released on December 7. Supercomputer perhaps wasn't an apt description, so it settled on Hypercomputer Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Intel Won’t Have a Xeon Max Chip with New Emerald Rapids CPU

December 14, 2023

As expected, Intel officially announced its 5th generation Xeon server chips codenamed Emerald Rapids at an event in New York City, where the focus was really o Read more…

IBM Quantum Summit: Two New QPUs, Upgraded Qiskit, 10-year Roadmap and More

December 4, 2023

IBM kicks off its annual Quantum Summit today and will announce a broad range of advances including its much-anticipated 1121-qubit Condor QPU, a smaller 133-qu Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire