Intel Sets High Water Mark of One Teraflop with ‘Knights Corner’

By Michael Feldman

November 16, 2011

At SC11 in Seattle, Intel showed off an early silicon version of Intel’s Many Integrated Core (MIC) “Knight Corner,” the codename for its first commercial product based on their MIC architecture. The demonstration was performed for the benefit of reporters and analysts, who got to see the new chip in action at a press briefing here on Tuesday afternoon. The jury-rigged test setup had the chip running DGEMM (the double precision floating point version of the general matrix multiply algorithm) at a rather amazing one teraflop/second.

Rajeeb Hazra, GM of Intel’s Technical Computing, Datacenter and Connected Systems Group, waved one of the pre-production chip in front of audience, saying that they had produced “a few tens of chips” for early testing. According to Hazra, they were manufactured at one of their fabs using their 22nm process technology.

He was less forthcoming about other details on the chip however, dodging questions about core counts (once again reiterating that it will be more than 50), processor clock speed, and power consumption. On that last point, it’s likely that TDP is likely to be in the GPU-like 200 to 275 watt range, inasmuch as the coprocessors are destined for servers and workstations, which only have so much leeway with regard to power envelopes.

I did manage to find out the Knight Corner does indeed support ECC memory, although it wasn’t turned on for the DGEMM demo. According to the attending engineer, it doesn’t effect the flops on that code, but will lower performance somewhat on more general applications.

As Hazra pointed out in the briefing, this is the first general-purpose chip in history that is able to hit the one teraflop mark. And while that is true, it should be noted that NVIDIA’s “Kepler” GPU, which is likely to be in production prior to Knights Corner, will probably deliver somewhere between 1.2 to 1.4 double precision teraflops, or about twice that of the current Fermi-class Tesla GPUs.

Nonetheless, the early edition Knight Corner is a remarkable achievement by Intel, and something of a watershed moment for x86 chip making. In 1997, ASCI Red, an Pentium II Xeon-based supercomputer, needed 9,298 processor to hit this same one teraflop mark. And that machine, which was spread out over 72 cabinets, sucked up 800 KW of power.

The production Knights Corner chips delivered in a year or so may actually end up delivering something north of one teraflop, so it’s not a given that NVIDIA will win the flops battle in 2012. In any case, Intel is probably not overly concerned about absolute performance. It’s made a good case that the programming model for MIC will be the real differentiator here.

For some time Intel has been touting that its own x86 parallel compiler and development tools will offer complete support for MIC coprocessors, making the application porting effort much more productive than CUDA. When the code in question incorporates MIC-friendly parallel frameworks like OpenMP, initial porting may amount to no more than a recompile and a re-link. If that pans out as advertised, the ease-of-programming feature will ultimately be the deciding factor in MIC’s favor.

During the press briefing, R. Glenn Brook, a computational scientist at the National Institute for Computational Sciences, University of Tennessee, reported that his team had ported tens of million of lines of legacy science codes to MIC (on prototype “Knights Ferry” coprocessor-powered clusters) in under three months. According to Brook, some of these applications will probably never be ported to GPUs because the complexity of these codes would make the endeavor too onerous.

Clearly, Intel sees their manycore architecture as a path to exascale. In this realm power efficiency is the whole ball game, and MIC is inherently superior to more traditional x86 CPUs in this regard. If we assume Knights Corner is a 250 watt part, it will be able to deliver 4 gigaflops/watt today. That still a far cry from the 50 gigaflops/watt target for an exaflop system (which also has to include memory, interconnects, power supplies, etc.), but the performance/watt trajectory is much more in line with exascale efficiency compared Intel’s mainstream Xeon line.

Speaking of which, Hazra offered up some interesting performance stats on their new Xeon E5 (Sandy Bridge EP) processors. According to Intel testing, the Xeon E5-2680 chip delivers 172 gigaflops of peak performance. And while that bests any of the AMD Opteron 6200 series processors, it’s still well under 2 gigaflops/watt (hard to tell exactly since Intel hasn’t provided TDPs on these pre-launched parts). From that perspective, a traditional Xeon, at least without an on-chip MIC coprocessor, has a rather uncertain future in the exascale era.

But at least for the early petascale era, the Xeon processor is doing just fine. The previous generation Xeon 5600 line is in 223 of the top 500 supercomputers in the world. And the aforementioned Xeon E5 is already in 10 systems, despite the fact that the product won’t be officially launched until the first half of 2012 (which, to my mind, makes the term launch kind of meaningless).

In addition, the E5 will also be making an appearance in future top 10 systems, like GENCI’s 2-petaflop “Curie” super. It is also the CPU of choice for TACC’s 10-petaflop “Stampede” supercomputer, which is scheduled for deployment in early 2013. In this case though, the E5 will be eclipsed by the Knights Corner coprocessors, which will provide 8 of those 10 petaflops. If that trend holds, then MIC will indeed be Intel’s dominant supercomputing architecture for the second half the decade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Musk’s Latest Startup Eyes Brain-Computer Links

April 21, 2017

Elon Musk, the auto and space entrepreneur and severe critic of artificial intelligence, is forming a new venture that reportedly will seek to develop an interface between the human brain and computers. Read more…

By George Leopold

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Nvidia P100 Shows 1.3-2.3x Speedup Over K80 GPU on Financial Apps

April 20, 2017

When it comes to the true performance of the latest silicon, every end user knows that the best processor is the one that works best for their application. Read more…

By Tiffany Trader

Quantum Adds Global Smarts to StorNext File System

April 20, 2017

Companies that use Quantum’s StorNext platform to store massive amounts of data this week got a glimpse of new storage capabilities that should make it easier to access their data horde from anywhere in the world. Read more…

By Alex Woodie

HPE Extreme Performance Solutions

HPC-Driven Weather Simulations Improving Forecasting Capabilities

In September of 1938, a massive hurricane traversed the Atlantic Ocean and made landfall in New England. Due to inadequate and incorrect forecasting, the storm struck farther north and with greater intensity than had been predicted, leaving residents and authorities with virtually no warning or time to properly prepare. Read more…

Scaling an HPC Career in Nepal Can Be a Steep Climb

April 20, 2017

Umesh Upadhyaya works as an IT Associate at the International Centre for Integrated Mountain Development (ICIMOD) in Nepal, which supports the country’s one and only HPC facility. He is directly involved in an initiative that focuses on climate change and atmosphere modeling Read more…

By Nages Sieslack

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Intel Open Sources All Lustre Work, Brent Gorda Exits

April 19, 2017

In a letter to the Lustre community posted on the Intel website, Vice President of Intel's Data Center Group Trish Damkroger writes that effective immediately the company will be contributing all Lustre development to the open source community. Damkroger also announced that Brent Gorda, General Manager, High Performance Data Division at Intel is leaving the company. Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Hyperion (IDC) Paints a Bullish Picture of HPC Future

April 20, 2017

Hyperion Research – formerly IDC’s HPC group – yesterday painted a fascinating and complicated portrait of the HPC community’s health and prospects at the HPC User Forum held in Albuquerque, NM. HPC sales are up and growing ($22 billion, all HPC segments, 2016). Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

CERN openlab Explores New CPU/FPGA Processing Solutions

April 14, 2017

Through a CERN openlab project known as the ‘High-Throughput Computing Collaboration,’ researchers are investigating the use of various Intel technologies in data filtering and data acquisition systems. Read more…

By Linda Barney

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Penguin Takes a Run at the Big Cloud Providers

April 12, 2017

HPC specialist Penguin Computing recently re-ran benchmarks from a study of its larger brethren and says the results show its ‘public cloud’ – Penguin on Demand (POD) – is among the leaders in cost and performance. Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

HPC and the Colocation Datacenter – a Bridge Too Far?

April 7, 2017

A more standardised HPC platform approach is making the running of HPC projects within increasing financial reach. Read more…

By Clive Longbottom, Quocirca

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference phase of neural networks (NN). Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This