Intel Sets High Water Mark of One Teraflop with ‘Knights Corner’

By Michael Feldman

November 16, 2011

At SC11 in Seattle, Intel showed off an early silicon version of Intel’s Many Integrated Core (MIC) “Knight Corner,” the codename for its first commercial product based on their MIC architecture. The demonstration was performed for the benefit of reporters and analysts, who got to see the new chip in action at a press briefing here on Tuesday afternoon. The jury-rigged test setup had the chip running DGEMM (the double precision floating point version of the general matrix multiply algorithm) at a rather amazing one teraflop/second.

Rajeeb Hazra, GM of Intel’s Technical Computing, Datacenter and Connected Systems Group, waved one of the pre-production chip in front of audience, saying that they had produced “a few tens of chips” for early testing. According to Hazra, they were manufactured at one of their fabs using their 22nm process technology.

He was less forthcoming about other details on the chip however, dodging questions about core counts (once again reiterating that it will be more than 50), processor clock speed, and power consumption. On that last point, it’s likely that TDP is likely to be in the GPU-like 200 to 275 watt range, inasmuch as the coprocessors are destined for servers and workstations, which only have so much leeway with regard to power envelopes.

I did manage to find out the Knight Corner does indeed support ECC memory, although it wasn’t turned on for the DGEMM demo. According to the attending engineer, it doesn’t effect the flops on that code, but will lower performance somewhat on more general applications.

As Hazra pointed out in the briefing, this is the first general-purpose chip in history that is able to hit the one teraflop mark. And while that is true, it should be noted that NVIDIA’s “Kepler” GPU, which is likely to be in production prior to Knights Corner, will probably deliver somewhere between 1.2 to 1.4 double precision teraflops, or about twice that of the current Fermi-class Tesla GPUs.

Nonetheless, the early edition Knight Corner is a remarkable achievement by Intel, and something of a watershed moment for x86 chip making. In 1997, ASCI Red, an Pentium II Xeon-based supercomputer, needed 9,298 processor to hit this same one teraflop mark. And that machine, which was spread out over 72 cabinets, sucked up 800 KW of power.

The production Knights Corner chips delivered in a year or so may actually end up delivering something north of one teraflop, so it’s not a given that NVIDIA will win the flops battle in 2012. In any case, Intel is probably not overly concerned about absolute performance. It’s made a good case that the programming model for MIC will be the real differentiator here.

For some time Intel has been touting that its own x86 parallel compiler and development tools will offer complete support for MIC coprocessors, making the application porting effort much more productive than CUDA. When the code in question incorporates MIC-friendly parallel frameworks like OpenMP, initial porting may amount to no more than a recompile and a re-link. If that pans out as advertised, the ease-of-programming feature will ultimately be the deciding factor in MIC’s favor.

During the press briefing, R. Glenn Brook, a computational scientist at the National Institute for Computational Sciences, University of Tennessee, reported that his team had ported tens of million of lines of legacy science codes to MIC (on prototype “Knights Ferry” coprocessor-powered clusters) in under three months. According to Brook, some of these applications will probably never be ported to GPUs because the complexity of these codes would make the endeavor too onerous.

Clearly, Intel sees their manycore architecture as a path to exascale. In this realm power efficiency is the whole ball game, and MIC is inherently superior to more traditional x86 CPUs in this regard. If we assume Knights Corner is a 250 watt part, it will be able to deliver 4 gigaflops/watt today. That still a far cry from the 50 gigaflops/watt target for an exaflop system (which also has to include memory, interconnects, power supplies, etc.), but the performance/watt trajectory is much more in line with exascale efficiency compared Intel’s mainstream Xeon line.

Speaking of which, Hazra offered up some interesting performance stats on their new Xeon E5 (Sandy Bridge EP) processors. According to Intel testing, the Xeon E5-2680 chip delivers 172 gigaflops of peak performance. And while that bests any of the AMD Opteron 6200 series processors, it’s still well under 2 gigaflops/watt (hard to tell exactly since Intel hasn’t provided TDPs on these pre-launched parts). From that perspective, a traditional Xeon, at least without an on-chip MIC coprocessor, has a rather uncertain future in the exascale era.

But at least for the early petascale era, the Xeon processor is doing just fine. The previous generation Xeon 5600 line is in 223 of the top 500 supercomputers in the world. And the aforementioned Xeon E5 is already in 10 systems, despite the fact that the product won’t be officially launched until the first half of 2012 (which, to my mind, makes the term launch kind of meaningless).

In addition, the E5 will also be making an appearance in future top 10 systems, like GENCI’s 2-petaflop “Curie” super. It is also the CPU of choice for TACC’s 10-petaflop “Stampede” supercomputer, which is scheduled for deployment in early 2013. In this case though, the E5 will be eclipsed by the Knights Corner coprocessors, which will provide 8 of those 10 petaflops. If that trend holds, then MIC will indeed be Intel’s dominant supercomputing architecture for the second half the decade.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Finland’s CSC Chronicles the COVID Research Performed on Its ‘Puhti’ Supercomputer

May 11, 2021

CSC, Finland’s IT Center for Science, is home to a variety of computing resources, including the 1.7 petaflops Puhti supercomputer. The 682-node, Intel Cascade Lake-powered system, which places about halfway down the T Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x speedup in simulating molecules. Qiskit is IBM’s quantum soft Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base clock of 2.0GHz – implemented in HPE's single-socket ProLian Read more…

Supercomputer Research Tracks the Loss of the World’s Glaciers

May 7, 2021

British Columbia – which is over twice the size of California – contains around 17,000 glaciers that cover three percent of its landmass. These glaciers are crucial for the Canadian province, which relies on its many Read more…

AWS Solution Channel

FLYING WHALES runs CFD workloads 15 times faster on AWS

FLYING WHALES is a French startup that is developing a 60-ton payload cargo airship for the heavy lift and outsize cargo market. The project was born out of France’s ambition to provide efficient, environmentally friendly transportation for collecting wood in remote areas. Read more…

Meet Dell’s Pete Manca, an HPCwire Person to Watch in 2021

May 7, 2021

Pete Manca heads up Dell's newly formed HPC and AI leadership group. As senior vice president of the integrated solutions engineering team, he is focused on custom design, technology alliances, high-performance computing Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

LRZ Announces New Phase of SuperMUC-NG Supercomputer with Intel’s ‘Ponte Vecchio’ GPU

May 5, 2021

At the Leibniz Supercomputing Centre (LRZ) in München, Germany – one of the constituent centers of the Gauss Centre for Supercomputing (GCS) – the SuperMUC Read more…

Crystal Ball Gazing at Nvidia: R&D Chief Bill Dally Talks Targets and Approach

May 4, 2021

There’s no quibbling with Nvidia’s success. Entrenched atop the GPU market, Nvidia has ridden its own inventiveness and growing demand for accelerated computing to meet the needs of HPC and AI. Recently it embarked on an ambitious expansion by acquiring Mellanox (interconnect)... Read more…

Intel Invests $3.5 Billion in New Mexico Fab to Focus on Foveros Packaging Technology

May 3, 2021

Intel announced it is investing $3.5 billion in its Rio Rancho, New Mexico, facility to support its advanced 3D manufacturing and packaging technology, Foveros. Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

HPE Names Justin Hotard New HPC Chief as Pete Ungaro Departs

March 2, 2021

HPE CEO Antonio Neri announced today (March 2, 2021) the appointment of Justin Hotard as general manager of HPC, mission critical solutions and labs, effective Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire