Startup Aims to Bring Parallel Applications to the Masses

By Nicole Hemsoth

November 16, 2011

There are a number of young companies at SC11 this week, debuting novel technologies. One of them, Advanced Cluster Systems (ACS), recently launched its first software product, with the rather bold name of Supercomputing Engine Technology (SET). It promises one of the Holy Grails of HPC: to turn sequential applications into parallel ones.

HPCwire got the opportunity to ask ACS founder and CEO Zvi Tannenbaum and, ACS CTO Dean Dauger about the product and the underlying technology.

HPCwire: How did Advanced Cluster Systems start out?

Zvi Tannenbaum: ACS was established in November 2004. At that time, ACS’s mission was to expedite scientific processes for a particular finance company utilizing Wolfram Research gridMathematica. While working on solutions, I realized how hard it is to do (Parallel Mathematica is grid-based, not supercomputing-based), and the great expense of software licenses, especially considering that the technology did not take advantage of all available resources (I.e., Mathematica utilized only half the cores available). I followed up with Wolfram, who explained that their software was not built to take advantage of multicore processors.
 
In late 2006, I contacted Dr. Dean Dauger, a world-renowned supercomputing expert who developed the easy-to-use patented Pooch clustering software, and explained to him my idea to attach Mathematica kernels to his Pooch clustering solution to give supercomputing-like all-to-all connectivity to Mathematica kernels. Dr. Dauger finished this project in one month, practically turning Mathematica into a supercomputing application, without changing a single line of its source code — Mathematica is a proprietary software.

Once we finished the project, Dr. Dauger and I realized that we came upon something much bigger than just parallelizing Mathematica. We took a modular sequential code like Mathematica and provided it with supercomputer-like parallelism. We then continued our development and created SET.
 
ACS recently acquired the patented Pooch clustering technology from Dr. Dauger, who has joined ACS as an owner. ACS today holds the rights to three patents: two regarding easy-to-use clustering — the Pooch technologies– and the third regarding the recently granted SET patent. And ACS has other patents still pending, so more on the way!
 
HPCwire: Dean, can you tell us what the Supercomputing Engine Technology does and how it works?

Dean Dauger: SET applies the parallel computing paradigm of distributed-memory MPI, proven over the last twenty years to achieve efficient parallelism from multicore to clusters to clouds and supercomputers. However it has three defining differences from MPI.

The first is that it provides a support architecture and framework that covers common parallel computing patterns. Beyond simply message-passing patterns, SET “owns” the data to be manipulated across the parallel computer so that SET can organize and rearrange the data as needed for the parallel computing pattern. SET supports parallel data structures, such as partitioning with guard cells and element management, and parallel execution patterns, such as divide-and-conquer array generation, common to many parallel codes, including MPI codes.

Because that support has never made it into MPI itself, every writer for MPI has had to rewrite the same parallel data structure and execution again and again. SET makes parallel code writing easier by writing that once and not requiring users to debug that part of the code.

The second defining difference from MPI is that it has the application organized into a “Front End” and “Back End”, with distinct purposes. The Front End is the “captain” of the application, directing the entire application and making global decisions, much like the main function or main loop of a code. The Back End does the grunt work, the raw and low-level calculations.

SET is the bridge between the Front End and the Back End, but that division allows SET to organize the work performed by the many Back End codes as appropriate for parallelism. In particular, SET runs many Back End codes simultaneously, allowing the writer of the Back End code, because by definition it simply does its own chunk work on its chunk of data, to not have to think about parallelism.

The third is that the result is a parallel computing approach that is much easier to use for application developers. As much as possible, the details of parallel computing is handled by SET, whether it be data or execution management across the cluster. The application-specific pieces are in the Front End, which defines the high-level execution of the parallel application, and the Back End, where the low-level calculations are actually performed.

I personally enjoy MPI, but I’ve encountered many with parallel computing needs that see MPI as too much like assembly language. We designed SET with the scope necessary to cover parallel computing details while enabling the application writer to think sequentially as much as possible.
 
HPCwire: What types of dependencies does SET have on the underlying platform — OS, software stack, hardware, and so on?

Dauger: Fundamentally, SET needs a parallel system with some equivalent of MPI_Irecv, MPI_Isend, and MPI_Test, plus the usual metrics of the system (rank and size). This makes it possible to port SET to shared-memory as well as standard MPI systems.

At present implementation of SET runs on all the major Unix-compatible platforms. We’ve run it on OS X and 64-bit Linux clusters as well as larger systems like SGI. As ACS’s resources allows, we will expand SET to other OS’s.
 
HPCwire: How would a sequential program need to be modified so that it could tap into the SET technology?

Dauger: The application would be organized into a “Front End” and “Back End”: The Front End is the “captain” of the application, directing the entire application and making global decisions, like the main loop I mentioned before. The Front End is also where the user-interface, if any, resides.

The Back End does the grunt work, the raw and low-level calculations. Any modern modular code should be able to be factored relatively easily this way, as it is an excellent and well-accepted approach for reusing code between projects.

HPCwire: How long would this typically take?

Dauger: Factoring the application into the Front End and Back End should be straightforward for a modular or other modern, well-organized application. After that one adds “glue code” between SET and the Front End and SET and the Back End, which typically consists of wrapper calls or minor replacements. Then there’s testing and optimization. Most projects using conventional approaches allows a year to accomplish this. With SET this can take under a month.

HPCwire: How well does the technology scale in the multicore, multiprocessor, and multi-server dimensions?

Dauger: Since the underlying paradigm is that of distributed-memory MPI, it scales almost as well as distributed-memory MPI on all parallel computing implementations. Where SET might do poorly is also where other parallel approaches do poorly, such when communication time is far greater than the computation size. The purpose of SET is to make it much easier for the software writer to quickly produce an application that can achieve scale.

HPCwire: Compared to a hand-coded MPI application, how well does SET perform?

Dauger: The SET approach has produced codes that scale almost as well as traditional hand-coded MPI applications. In some cases the results are indistinguishable from what is accomplished via MPI.
 
HPCwire: Has the SET technology been applied to any real-world codes?

Dauger: The first major proof-of-concept is SET’s application to Wolfram Research’s Mathematica. Mathematica is a very large application, millions of lines of code. The usual approaches would have taken a year, probably longer. Applying our SET to Mathematica took only one man-month, and yet it is able to scale far better than any other solution using Mathematica. That is now a product named Supercomputing Engine for Mathematica. Notably, because Mathematica is well modularized, we didn’t even need to look at Mathematica’s source code.
 
HPCwire: Zvi, what’s the company’s business model?

Tannenbaum: The primary sales strategy for Advanced Cluster Systems is to execute on a reseller channel program to leverage ACS by creating independent contractor relationships with value-added resellers — resellers or VARs — and solution providers. This will enable ACS to deploy a sales team with varied industry expertise, existing relationships with prospective customers and worldwide sales coverage without the fixed expense of hiring a direct sales force beyond a Director of sales/reseller channel manager.

HPCwire: What’s the next step for Advanced Cluster Systems?

Tannenbaum: ACS is a very small company and the next step is to cultivate its technology while remaining focused on our plans and avoiding pitfalls that can stop a tech-company’s growth in its tracks. In addition to continued development and executing plans to implement our Reseller Channel Program, we are working with major hardware companies to get SET exposure. We are currently working with an American VAR to distribute an upcoming SET-based enhancement to a scientific software product, and we are talking with cloud service providers.

We also have established our presence in Europe with Daresbury Labs and a British solution provider on site. We realize that a good reseller channel program must have a good marketing program to support it, and we are pursuing that course as well. We are also revising our business plan to prepare for external funding to achieve our goals and continue controlled and consistent growth.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This