Startup Aims to Bring Parallel Applications to the Masses

By Nicole Hemsoth

November 16, 2011

There are a number of young companies at SC11 this week, debuting novel technologies. One of them, Advanced Cluster Systems (ACS), recently launched its first software product, with the rather bold name of Supercomputing Engine Technology (SET). It promises one of the Holy Grails of HPC: to turn sequential applications into parallel ones.

HPCwire got the opportunity to ask ACS founder and CEO Zvi Tannenbaum and, ACS CTO Dean Dauger about the product and the underlying technology.

HPCwire: How did Advanced Cluster Systems start out?

Zvi Tannenbaum: ACS was established in November 2004. At that time, ACS’s mission was to expedite scientific processes for a particular finance company utilizing Wolfram Research gridMathematica. While working on solutions, I realized how hard it is to do (Parallel Mathematica is grid-based, not supercomputing-based), and the great expense of software licenses, especially considering that the technology did not take advantage of all available resources (I.e., Mathematica utilized only half the cores available). I followed up with Wolfram, who explained that their software was not built to take advantage of multicore processors.
 
In late 2006, I contacted Dr. Dean Dauger, a world-renowned supercomputing expert who developed the easy-to-use patented Pooch clustering software, and explained to him my idea to attach Mathematica kernels to his Pooch clustering solution to give supercomputing-like all-to-all connectivity to Mathematica kernels. Dr. Dauger finished this project in one month, practically turning Mathematica into a supercomputing application, without changing a single line of its source code — Mathematica is a proprietary software.

Once we finished the project, Dr. Dauger and I realized that we came upon something much bigger than just parallelizing Mathematica. We took a modular sequential code like Mathematica and provided it with supercomputer-like parallelism. We then continued our development and created SET.
 
ACS recently acquired the patented Pooch clustering technology from Dr. Dauger, who has joined ACS as an owner. ACS today holds the rights to three patents: two regarding easy-to-use clustering — the Pooch technologies– and the third regarding the recently granted SET patent. And ACS has other patents still pending, so more on the way!
 
HPCwire: Dean, can you tell us what the Supercomputing Engine Technology does and how it works?

Dean Dauger: SET applies the parallel computing paradigm of distributed-memory MPI, proven over the last twenty years to achieve efficient parallelism from multicore to clusters to clouds and supercomputers. However it has three defining differences from MPI.

The first is that it provides a support architecture and framework that covers common parallel computing patterns. Beyond simply message-passing patterns, SET “owns” the data to be manipulated across the parallel computer so that SET can organize and rearrange the data as needed for the parallel computing pattern. SET supports parallel data structures, such as partitioning with guard cells and element management, and parallel execution patterns, such as divide-and-conquer array generation, common to many parallel codes, including MPI codes.

Because that support has never made it into MPI itself, every writer for MPI has had to rewrite the same parallel data structure and execution again and again. SET makes parallel code writing easier by writing that once and not requiring users to debug that part of the code.

The second defining difference from MPI is that it has the application organized into a “Front End” and “Back End”, with distinct purposes. The Front End is the “captain” of the application, directing the entire application and making global decisions, much like the main function or main loop of a code. The Back End does the grunt work, the raw and low-level calculations.

SET is the bridge between the Front End and the Back End, but that division allows SET to organize the work performed by the many Back End codes as appropriate for parallelism. In particular, SET runs many Back End codes simultaneously, allowing the writer of the Back End code, because by definition it simply does its own chunk work on its chunk of data, to not have to think about parallelism.

The third is that the result is a parallel computing approach that is much easier to use for application developers. As much as possible, the details of parallel computing is handled by SET, whether it be data or execution management across the cluster. The application-specific pieces are in the Front End, which defines the high-level execution of the parallel application, and the Back End, where the low-level calculations are actually performed.

I personally enjoy MPI, but I’ve encountered many with parallel computing needs that see MPI as too much like assembly language. We designed SET with the scope necessary to cover parallel computing details while enabling the application writer to think sequentially as much as possible.
 
HPCwire: What types of dependencies does SET have on the underlying platform — OS, software stack, hardware, and so on?

Dauger: Fundamentally, SET needs a parallel system with some equivalent of MPI_Irecv, MPI_Isend, and MPI_Test, plus the usual metrics of the system (rank and size). This makes it possible to port SET to shared-memory as well as standard MPI systems.

At present implementation of SET runs on all the major Unix-compatible platforms. We’ve run it on OS X and 64-bit Linux clusters as well as larger systems like SGI. As ACS’s resources allows, we will expand SET to other OS’s.
 
HPCwire: How would a sequential program need to be modified so that it could tap into the SET technology?

Dauger: The application would be organized into a “Front End” and “Back End”: The Front End is the “captain” of the application, directing the entire application and making global decisions, like the main loop I mentioned before. The Front End is also where the user-interface, if any, resides.

The Back End does the grunt work, the raw and low-level calculations. Any modern modular code should be able to be factored relatively easily this way, as it is an excellent and well-accepted approach for reusing code between projects.

HPCwire: How long would this typically take?

Dauger: Factoring the application into the Front End and Back End should be straightforward for a modular or other modern, well-organized application. After that one adds “glue code” between SET and the Front End and SET and the Back End, which typically consists of wrapper calls or minor replacements. Then there’s testing and optimization. Most projects using conventional approaches allows a year to accomplish this. With SET this can take under a month.

HPCwire: How well does the technology scale in the multicore, multiprocessor, and multi-server dimensions?

Dauger: Since the underlying paradigm is that of distributed-memory MPI, it scales almost as well as distributed-memory MPI on all parallel computing implementations. Where SET might do poorly is also where other parallel approaches do poorly, such when communication time is far greater than the computation size. The purpose of SET is to make it much easier for the software writer to quickly produce an application that can achieve scale.

HPCwire: Compared to a hand-coded MPI application, how well does SET perform?

Dauger: The SET approach has produced codes that scale almost as well as traditional hand-coded MPI applications. In some cases the results are indistinguishable from what is accomplished via MPI.
 
HPCwire: Has the SET technology been applied to any real-world codes?

Dauger: The first major proof-of-concept is SET’s application to Wolfram Research’s Mathematica. Mathematica is a very large application, millions of lines of code. The usual approaches would have taken a year, probably longer. Applying our SET to Mathematica took only one man-month, and yet it is able to scale far better than any other solution using Mathematica. That is now a product named Supercomputing Engine for Mathematica. Notably, because Mathematica is well modularized, we didn’t even need to look at Mathematica’s source code.
 
HPCwire: Zvi, what’s the company’s business model?

Tannenbaum: The primary sales strategy for Advanced Cluster Systems is to execute on a reseller channel program to leverage ACS by creating independent contractor relationships with value-added resellers — resellers or VARs — and solution providers. This will enable ACS to deploy a sales team with varied industry expertise, existing relationships with prospective customers and worldwide sales coverage without the fixed expense of hiring a direct sales force beyond a Director of sales/reseller channel manager.

HPCwire: What’s the next step for Advanced Cluster Systems?

Tannenbaum: ACS is a very small company and the next step is to cultivate its technology while remaining focused on our plans and avoiding pitfalls that can stop a tech-company’s growth in its tracks. In addition to continued development and executing plans to implement our Reseller Channel Program, we are working with major hardware companies to get SET exposure. We are currently working with an American VAR to distribute an upcoming SET-based enhancement to a scientific software product, and we are talking with cloud service providers.

We also have established our presence in Europe with Daresbury Labs and a British solution provider on site. We realize that a good reseller channel program must have a good marketing program to support it, and we are pursuing that course as well. We are also revising our business plan to prepare for external funding to achieve our goals and continue controlled and consistent growth.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This