Startup Aims to Bring Parallel Applications to the Masses

By Nicole Hemsoth

November 16, 2011

There are a number of young companies at SC11 this week, debuting novel technologies. One of them, Advanced Cluster Systems (ACS), recently launched its first software product, with the rather bold name of Supercomputing Engine Technology (SET). It promises one of the Holy Grails of HPC: to turn sequential applications into parallel ones.

HPCwire got the opportunity to ask ACS founder and CEO Zvi Tannenbaum and, ACS CTO Dean Dauger about the product and the underlying technology.

HPCwire: How did Advanced Cluster Systems start out?

Zvi Tannenbaum: ACS was established in November 2004. At that time, ACS’s mission was to expedite scientific processes for a particular finance company utilizing Wolfram Research gridMathematica. While working on solutions, I realized how hard it is to do (Parallel Mathematica is grid-based, not supercomputing-based), and the great expense of software licenses, especially considering that the technology did not take advantage of all available resources (I.e., Mathematica utilized only half the cores available). I followed up with Wolfram, who explained that their software was not built to take advantage of multicore processors.
In late 2006, I contacted Dr. Dean Dauger, a world-renowned supercomputing expert who developed the easy-to-use patented Pooch clustering software, and explained to him my idea to attach Mathematica kernels to his Pooch clustering solution to give supercomputing-like all-to-all connectivity to Mathematica kernels. Dr. Dauger finished this project in one month, practically turning Mathematica into a supercomputing application, without changing a single line of its source code — Mathematica is a proprietary software.

Once we finished the project, Dr. Dauger and I realized that we came upon something much bigger than just parallelizing Mathematica. We took a modular sequential code like Mathematica and provided it with supercomputer-like parallelism. We then continued our development and created SET.
ACS recently acquired the patented Pooch clustering technology from Dr. Dauger, who has joined ACS as an owner. ACS today holds the rights to three patents: two regarding easy-to-use clustering — the Pooch technologies– and the third regarding the recently granted SET patent. And ACS has other patents still pending, so more on the way!
HPCwire: Dean, can you tell us what the Supercomputing Engine Technology does and how it works?

Dean Dauger: SET applies the parallel computing paradigm of distributed-memory MPI, proven over the last twenty years to achieve efficient parallelism from multicore to clusters to clouds and supercomputers. However it has three defining differences from MPI.

The first is that it provides a support architecture and framework that covers common parallel computing patterns. Beyond simply message-passing patterns, SET “owns” the data to be manipulated across the parallel computer so that SET can organize and rearrange the data as needed for the parallel computing pattern. SET supports parallel data structures, such as partitioning with guard cells and element management, and parallel execution patterns, such as divide-and-conquer array generation, common to many parallel codes, including MPI codes.

Because that support has never made it into MPI itself, every writer for MPI has had to rewrite the same parallel data structure and execution again and again. SET makes parallel code writing easier by writing that once and not requiring users to debug that part of the code.

The second defining difference from MPI is that it has the application organized into a “Front End” and “Back End”, with distinct purposes. The Front End is the “captain” of the application, directing the entire application and making global decisions, much like the main function or main loop of a code. The Back End does the grunt work, the raw and low-level calculations.

SET is the bridge between the Front End and the Back End, but that division allows SET to organize the work performed by the many Back End codes as appropriate for parallelism. In particular, SET runs many Back End codes simultaneously, allowing the writer of the Back End code, because by definition it simply does its own chunk work on its chunk of data, to not have to think about parallelism.

The third is that the result is a parallel computing approach that is much easier to use for application developers. As much as possible, the details of parallel computing is handled by SET, whether it be data or execution management across the cluster. The application-specific pieces are in the Front End, which defines the high-level execution of the parallel application, and the Back End, where the low-level calculations are actually performed.

I personally enjoy MPI, but I’ve encountered many with parallel computing needs that see MPI as too much like assembly language. We designed SET with the scope necessary to cover parallel computing details while enabling the application writer to think sequentially as much as possible.
HPCwire: What types of dependencies does SET have on the underlying platform — OS, software stack, hardware, and so on?

Dauger: Fundamentally, SET needs a parallel system with some equivalent of MPI_Irecv, MPI_Isend, and MPI_Test, plus the usual metrics of the system (rank and size). This makes it possible to port SET to shared-memory as well as standard MPI systems.

At present implementation of SET runs on all the major Unix-compatible platforms. We’ve run it on OS X and 64-bit Linux clusters as well as larger systems like SGI. As ACS’s resources allows, we will expand SET to other OS’s.
HPCwire: How would a sequential program need to be modified so that it could tap into the SET technology?

Dauger: The application would be organized into a “Front End” and “Back End”: The Front End is the “captain” of the application, directing the entire application and making global decisions, like the main loop I mentioned before. The Front End is also where the user-interface, if any, resides.

The Back End does the grunt work, the raw and low-level calculations. Any modern modular code should be able to be factored relatively easily this way, as it is an excellent and well-accepted approach for reusing code between projects.

HPCwire: How long would this typically take?

Dauger: Factoring the application into the Front End and Back End should be straightforward for a modular or other modern, well-organized application. After that one adds “glue code” between SET and the Front End and SET and the Back End, which typically consists of wrapper calls or minor replacements. Then there’s testing and optimization. Most projects using conventional approaches allows a year to accomplish this. With SET this can take under a month.

HPCwire: How well does the technology scale in the multicore, multiprocessor, and multi-server dimensions?

Dauger: Since the underlying paradigm is that of distributed-memory MPI, it scales almost as well as distributed-memory MPI on all parallel computing implementations. Where SET might do poorly is also where other parallel approaches do poorly, such when communication time is far greater than the computation size. The purpose of SET is to make it much easier for the software writer to quickly produce an application that can achieve scale.

HPCwire: Compared to a hand-coded MPI application, how well does SET perform?

Dauger: The SET approach has produced codes that scale almost as well as traditional hand-coded MPI applications. In some cases the results are indistinguishable from what is accomplished via MPI.
HPCwire: Has the SET technology been applied to any real-world codes?

Dauger: The first major proof-of-concept is SET’s application to Wolfram Research’s Mathematica. Mathematica is a very large application, millions of lines of code. The usual approaches would have taken a year, probably longer. Applying our SET to Mathematica took only one man-month, and yet it is able to scale far better than any other solution using Mathematica. That is now a product named Supercomputing Engine for Mathematica. Notably, because Mathematica is well modularized, we didn’t even need to look at Mathematica’s source code.
HPCwire: Zvi, what’s the company’s business model?

Tannenbaum: The primary sales strategy for Advanced Cluster Systems is to execute on a reseller channel program to leverage ACS by creating independent contractor relationships with value-added resellers — resellers or VARs — and solution providers. This will enable ACS to deploy a sales team with varied industry expertise, existing relationships with prospective customers and worldwide sales coverage without the fixed expense of hiring a direct sales force beyond a Director of sales/reseller channel manager.

HPCwire: What’s the next step for Advanced Cluster Systems?

Tannenbaum: ACS is a very small company and the next step is to cultivate its technology while remaining focused on our plans and avoiding pitfalls that can stop a tech-company’s growth in its tracks. In addition to continued development and executing plans to implement our Reseller Channel Program, we are working with major hardware companies to get SET exposure. We are currently working with an American VAR to distribute an upcoming SET-based enhancement to a scientific software product, and we are talking with cloud service providers.

We also have established our presence in Europe with Daresbury Labs and a British solution provider on site. We realize that a good reseller channel program must have a good marketing program to support it, and we are pursuing that course as well. We are also revising our business plan to prepare for external funding to achieve our goals and continue controlled and consistent growth.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in Computing vs. COVID-19: Fugaku, Congress, De Novo Design & More

July 2, 2020

Supercomputing, big data and artificial intelligence are crucial tools in the fight against the coronavirus pandemic. Around the world, researchers, corporations and governments are urgently devoting their computing reso Read more…

By Oliver Peckham

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time last year, IBM announced open sourcing its Power instructio Read more…

By John Russell

HPC Career Notes: July 2020 Edition

July 1, 2020

In this monthly feature, we'll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it's a promotion, new company hire, or even an accolade, we've got Read more…

By Mariana Iriarte

Supercomputers Enable Radical, Promising New COVID-19 Drug Development Approach

July 1, 2020

Around the world, innumerable supercomputers are sifting through billions of molecules in a desperate search for a viable therapeutic to treat COVID-19. Those molecules are pulled from enormous databases of known compoun Read more…

By Oliver Peckham

HPC-Powered Simulations Reveal a Looming Climatic Threat to Vital Monsoon Seasons

June 30, 2020

As June draws to a close, eyes are turning to the latter half of the year – and with it, the monsoon and hurricane seasons that can prove vital or devastating for many of the world’s coastal communities. Now, climate Read more…

By Oliver Peckham

AWS Solution Channel

Maxar Builds HPC on AWS to Deliver Forecasts 58% Faster Than Weather Supercomputer

When weather threatens drilling rigs, refineries, and other energy facilities, oil and gas companies want to move fast to protect personnel and equipment. And for firms that trade commodity shares in oil, precious metals, crops, and livestock, the weather can significantly impact their buy-sell decisions. Read more…

Intel® HPC + AI Pavilion

Supercomputing the Pandemic: Scientific Community Tackles COVID-19 from Multiple Perspectives

Since their inception, supercomputers have taken on the biggest, most complex, and most data-intensive computing challenges—from confirming Einstein’s theories about gravitational waves to predicting the impacts of climate change. Read more…

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This year is no different though the conversion of ISC to a digital Read more…

By John Russell

OpenPOWER Reboot – New Director, New Silicon Partners, Leveraging Linux Foundation Connections

July 2, 2020

Earlier this week the OpenPOWER Foundation announced the contribution of IBM’s A21 Power processor core design to the open source community. Roughly this time Read more…

By John Russell

Hyperion Forecast – Headwinds in 2020 Won’t Stifle Cloud HPC Adoption or Arm’s Rise

June 30, 2020

The semiannual taking of HPC’s pulse by Hyperion Research – late fall at SC and early summer at ISC – is a much-watched indicator of things come. This yea Read more…

By John Russell

Racism and HPC: a Special Podcast

June 29, 2020

Promoting greater diversity in HPC is a much-discussed goal and ostensibly a long-sought goal in HPC. Yet it seems clear HPC is far from achieving this goal. Re Read more…

Top500 Trends: Movement on Top, but Record Low Turnover

June 25, 2020

The 55th installment of the Top500 list saw strong activity in the leadership segment with four new systems in the top ten and a crowning achievement from the f Read more…

By Tiffany Trader

ISC 2020 Keynote: Hope for the Future, Praise for Fugaku and HPC’s Pandemic Response

June 24, 2020

In stark contrast to past years Thomas Sterling’s ISC20 keynote today struck a more somber note with the COVID-19 pandemic as the central character in Sterling’s annual review of worldwide trends in HPC. Better known for his engaging manner and occasional willingness to poke prickly egos, Sterling instead strode through the numbing statistics associated... Read more…

By John Russell

ISC 2020’s Student Cluster Competition Winners Announced

June 24, 2020

Normally, the Student Cluster Competition involves teams of students building real computing clusters on the show floors of major supercomputer conferences and Read more…

By Oliver Peckham

Hoefler’s Whirlwind ISC20 Virtual Tour of ML Trends in 9 Slides

June 23, 2020

The ISC20 experience this year via livestreaming and pre-recordings is interesting and perhaps a bit odd. That said presenters’ efforts to condense their comments makes for economic use of your time. Torsten Hoefler’s whirlwind 12-minute tour of ML is a great example. Hoefler, leader of the planned ISC20 Machine Learning... Read more…

By John Russell

At ISC, the Fight Against COVID-19 Took the Stage – and Yes, Fugaku Was There

June 23, 2020

With over nine million infected and nearly half a million dead, the COVID-19 pandemic has seized the world’s attention for several months. It has also dominat Read more…

By Oliver Peckham

Supercomputer Modeling Tests How COVID-19 Spreads in Grocery Stores

April 8, 2020

In the COVID-19 era, many people are treating simple activities like getting gas or groceries with caution as they try to heed social distancing mandates and protect their own health. Still, significant uncertainty surrounds the relative risk of different activities, and conflicting information is prevalent. A team of Finnish researchers set out to address some of these uncertainties by... Read more…

By Oliver Peckham

[email protected] Turns Its Massive Crowdsourced Computer Network Against COVID-19

March 16, 2020

For gamers, fighting against a global crisis is usually pure fantasy – but now, it’s looking more like a reality. As supercomputers around the world spin up Read more…

By Oliver Peckham

[email protected] Rallies a Legion of Computers Against the Coronavirus

March 24, 2020

Last week, we highlighted [email protected], a massive, crowdsourced computer network that has turned its resources against the coronavirus pandemic sweeping the globe – but [email protected] isn’t the only game in town. The internet is buzzing with crowdsourced computing... Read more…

By Oliver Peckham

Global Supercomputing Is Mobilizing Against COVID-19

March 12, 2020

Tech has been taking some heavy losses from the coronavirus pandemic. Global supply chains have been disrupted, virtually every major tech conference taking place over the next few months has been canceled... Read more…

By Oliver Peckham

Supercomputer Simulations Reveal the Fate of the Neanderthals

May 25, 2020

For hundreds of thousands of years, neanderthals roamed the planet, eventually (almost 50,000 years ago) giving way to homo sapiens, which quickly became the do Read more…

By Oliver Peckham

DoE Expands on Role of COVID-19 Supercomputing Consortium

March 25, 2020

After announcing the launch of the COVID-19 High Performance Computing Consortium on Sunday, the Department of Energy yesterday provided more details on its sco Read more…

By John Russell

Steve Scott Lays Out HPE-Cray Blended Product Roadmap

March 11, 2020

Last week, the day before the El Capitan processor disclosures were made at HPE's new headquarters in San Jose, Steve Scott (CTO for HPC & AI at HPE, and former Cray CTO) was on-hand at the Rice Oil & Gas HPC conference in Houston. He was there to discuss the HPE-Cray transition and blended roadmap, as well as his favorite topic, Cray's eighth-gen networking technology, Slingshot. Read more…

By Tiffany Trader

Honeywell’s Big Bet on Trapped Ion Quantum Computing

April 7, 2020

Honeywell doesn’t spring to mind when thinking of quantum computing pioneers, but a decade ago the high-tech conglomerate better known for its control systems waded deliberately into the then calmer quantum computing (QC) waters. Fast forward to March when Honeywell announced plans to introduce an ion trap-based quantum computer whose ‘performance’ would... Read more…

By John Russell

Leading Solution Providers


Neocortex Will Be First-of-Its-Kind 800,000-Core AI Supercomputer

June 9, 2020

Pittsburgh Supercomputing Center (PSC - a joint research organization of Carnegie Mellon University and the University of Pittsburgh) has won a $5 million award Read more…

By Tiffany Trader

‘Billion Molecules Against COVID-19’ Challenge to Launch with Massive Supercomputing Support

April 22, 2020

Around the world, supercomputing centers have spun up and opened their doors for COVID-19 research in what may be the most unified supercomputing effort in hist Read more…

By Oliver Peckham

Australian Researchers Break All-Time Internet Speed Record

May 26, 2020

If you’ve been stuck at home for the last few months, you’ve probably become more attuned to the quality (or lack thereof) of your internet connection. Even Read more…

By Oliver Peckham

15 Slides on Programming Aurora and Exascale Systems

May 7, 2020

Sometime in 2021, Aurora, the first planned U.S. exascale system, is scheduled to be fired up at Argonne National Laboratory. Cray (now HPE) and Intel are the k Read more…

By John Russell

Nvidia’s Ampere A100 GPU: Up to 2.5X the HPC, 20X the AI

May 14, 2020

Nvidia's first Ampere-based graphics card, the A100 GPU, packs a whopping 54 billion transistors on 826mm2 of silicon, making it the world's largest seven-nanom Read more…

By Tiffany Trader

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

By Doug Black

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

TACC Supercomputers Run Simulations Illuminating COVID-19, DNA Replication

March 19, 2020

As supercomputers around the world spin up to combat the coronavirus, the Texas Advanced Computing Center (TACC) is announcing results that may help to illumina Read more…

By Staff report

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This