Integrated Photonics Coming of Age

By Nicole Hemsoth

November 17, 2011

Thanks to Moore’s Law and advances in silicon photonic fabrication, over the past 10 years more and more photonic components are being integrated onto chips. Such integration will present an opportunity for hardware engineers to reconsider basic computer designs.

That topic is the theme of a Disruptive Technology session at SC11 on Thursday, conducted by Keren Bergman of Columbia University and Nadya Bliss of MIT Lincoln Laboratory. In conjunction with photonic research at their respective organizations, Bergen and Bliss are working on the DARPA POEM Program (Photonically Optimized Embedded Microprocessor) led by Dr. Jagdeep Shah.

MIT Lincoln Laboratory’s role in the effort is to consider potential impact of silicon photonics on both applications and architectures. They are considering this problem both top down (i.e., what are the key application drivers that would benefit from or need performance advantage that photonic interconnects could provide) and bottom up (i.e., what possible architectural changes can be motivated by availability of photonic interconnects both on-chip and to memory).

At Columbia they have been developing an extensive suite of design tools for creating optically interconnected networks-on-chip that are physical layer accurate. This is the basis for their architectural design exploration and validation that the photonic technologies will function as intended.

Prior to their SC11 session, HPCwire asked Bergen and Bliss to discuss the technology issues surrounding integrated photonics and how it could impact computer systems, including HPC machines.

HPCwire: Where are photonic technologies deployed today and what are the main impacts it has had on computing to date?

Keren Bergman: Optical interconnects have historically been used in the longer distance connectivity of HPC systems to storage area networks. With increased bandwidth requirements optical links have been used for inter-rack cluster communications significantly reducing cabling congestion.

Current HPC systems with vastly increased parallelism have accelerated the need for communications bandwidth and driven optical interconnects further into backplane, even placing photonic technologies within the router package in the most advanced systems. Active cables have come into widespread use between racks. At modern 5 to 10 gigabits per second data rates, electrical cables don’t have adequate reach for this application in an HPC, and are far too bulky.

HPCwire: What is the current status of on-chip silicon photonics technology? What are some of the different approaches being explored?

Bergman: There has been significant progress in creating the key silicon photonics device components, however large scale monolithic integration with electrical circuitry in CMOS compatible processes remains a major challenge. Several schemes are currently under development for the integration of silicon photonic components with microelectronic components — both the transmitter and receiver circuits, and the microprocessor or memory components that will utilize the optical links.

The major approaches explored include front-end of CMOS line (FEOL) integration for building modulator and photodetector photonic circuitry and low-temperature processing where optical devices can be monolithically integrated with the metallization levels of the chip as a back-end of line (BEOL) fabrication step. The first use of silicon photonics utilizing some of these approaches appears to be in a module-based technology for the active optical cable market.

VCSEL-based optical modules are perhaps the most widely used technology today. Recent efforts have focused on approaches of directly integrating VCSELs onto the chip package.

HPCwire: How much better is on-chip silicon photonics compared to today’s copper interconnects?

Bergman: On-chip silicon photonic is a potentially disruptive communications platform for building high performance computing systems. Immense bandwidth densities are enabled by the low-loss single mode silicon photonic interconnect which can propagate numerous high bitrate — 40 to 100 gigabit per second — signals in dense WDM, corresponding to terabits per second in a single waveguide.

Furthermore, unlike electronic routing circuitry which requires individual switching elements for each data channel, a single broadband photonic switching element can route multiple high-bandwidth optical channels for the equivalent power of switching a single channel. The optical interconnect can therefore enable extremely high-bandwidth, low-latency end-to-end data transmission from on-chip to off-chip and potentially across the system without the need for power consuming repeaters, buffers, and regenerators.

Combining the power advantage with the bandwidth advantage could yield approximately an order of magnitude communication performance improvement over today’s interconnects — say 10 to 20x better.

HPCwire: How do you see on-chip silicon photonics changing processor, memory, and motherboard designs?

Nadya Bliss: This is exactly the right question to ask. While alone the bandwidth and energy efficiency improvements are significant, the true power of integrated silicon photonics can be demonstrated by considering new architectures and instruction sets. The physical and performance characteristics of silicon photonics enable consideration of new network architectures, new memory hierarchies such as flatter, fewer levels of cache, and pushing parallelism into the hardware.

All of the current computer architecture trends point to multicore systems, with increasing number of cores on chip. Photonic interconnects have the potential to both balance the compute capability of emerging multicore and simplify the programming model by enabling balanced communication.

Realizing these potential benefits in future commercial systems will require significant advancements in high density, low cost optical packaging technology that can meet the reliability challenges.

HPCwire: What will be the impact on system software: the operating system, compilers, communication libraries, etc.?

Bliss: While any new technology has the potential to require new compilers, libraries, etc, the current multicore platforms and the on-chip and to-memory communication challenges are requiring a re-evaluation of programming models. New programming models are emerging that improve programmability, reducing the burden on the programmer, while also allowing the users to increase parallel efficiency of computation. Better communication/computation balance and pushing parallelism closer to the hardware has the potential of simplifying programming models and therefore associated compilers and libraries.

HPCwire: Will applications have to change to take advantage of on-chip photonics?

Bliss: I don’t think applications have to change per se, but new capabilities can be enabled, for example: more complex algorithms can be implemented in smaller form factors.

HPCwire: When do you think we can expect to see on-chip photonics makes its way into commercial silicon?

Bliss: Given the existing research efforts and pending successful demonstrations of both technologies and application capabilities, it is possible to imagine that this would happen over the next 5 to 10 years. To be honest, if it doesn’t, the programmability and performance challenges will continue to get worse and we will see decreased performance scaling in the near future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This