Integrated Photonics Coming of Age

By Nicole Hemsoth

November 17, 2011

Thanks to Moore’s Law and advances in silicon photonic fabrication, over the past 10 years more and more photonic components are being integrated onto chips. Such integration will present an opportunity for hardware engineers to reconsider basic computer designs.

That topic is the theme of a Disruptive Technology session at SC11 on Thursday, conducted by Keren Bergman of Columbia University and Nadya Bliss of MIT Lincoln Laboratory. In conjunction with photonic research at their respective organizations, Bergen and Bliss are working on the DARPA POEM Program (Photonically Optimized Embedded Microprocessor) led by Dr. Jagdeep Shah.

MIT Lincoln Laboratory’s role in the effort is to consider potential impact of silicon photonics on both applications and architectures. They are considering this problem both top down (i.e., what are the key application drivers that would benefit from or need performance advantage that photonic interconnects could provide) and bottom up (i.e., what possible architectural changes can be motivated by availability of photonic interconnects both on-chip and to memory).

At Columbia they have been developing an extensive suite of design tools for creating optically interconnected networks-on-chip that are physical layer accurate. This is the basis for their architectural design exploration and validation that the photonic technologies will function as intended.

Prior to their SC11 session, HPCwire asked Bergen and Bliss to discuss the technology issues surrounding integrated photonics and how it could impact computer systems, including HPC machines.

HPCwire: Where are photonic technologies deployed today and what are the main impacts it has had on computing to date?

Keren Bergman: Optical interconnects have historically been used in the longer distance connectivity of HPC systems to storage area networks. With increased bandwidth requirements optical links have been used for inter-rack cluster communications significantly reducing cabling congestion.

Current HPC systems with vastly increased parallelism have accelerated the need for communications bandwidth and driven optical interconnects further into backplane, even placing photonic technologies within the router package in the most advanced systems. Active cables have come into widespread use between racks. At modern 5 to 10 gigabits per second data rates, electrical cables don’t have adequate reach for this application in an HPC, and are far too bulky.

HPCwire: What is the current status of on-chip silicon photonics technology? What are some of the different approaches being explored?

Bergman: There has been significant progress in creating the key silicon photonics device components, however large scale monolithic integration with electrical circuitry in CMOS compatible processes remains a major challenge. Several schemes are currently under development for the integration of silicon photonic components with microelectronic components — both the transmitter and receiver circuits, and the microprocessor or memory components that will utilize the optical links.

The major approaches explored include front-end of CMOS line (FEOL) integration for building modulator and photodetector photonic circuitry and low-temperature processing where optical devices can be monolithically integrated with the metallization levels of the chip as a back-end of line (BEOL) fabrication step. The first use of silicon photonics utilizing some of these approaches appears to be in a module-based technology for the active optical cable market.

VCSEL-based optical modules are perhaps the most widely used technology today. Recent efforts have focused on approaches of directly integrating VCSELs onto the chip package.

HPCwire: How much better is on-chip silicon photonics compared to today’s copper interconnects?

Bergman: On-chip silicon photonic is a potentially disruptive communications platform for building high performance computing systems. Immense bandwidth densities are enabled by the low-loss single mode silicon photonic interconnect which can propagate numerous high bitrate — 40 to 100 gigabit per second — signals in dense WDM, corresponding to terabits per second in a single waveguide.

Furthermore, unlike electronic routing circuitry which requires individual switching elements for each data channel, a single broadband photonic switching element can route multiple high-bandwidth optical channels for the equivalent power of switching a single channel. The optical interconnect can therefore enable extremely high-bandwidth, low-latency end-to-end data transmission from on-chip to off-chip and potentially across the system without the need for power consuming repeaters, buffers, and regenerators.

Combining the power advantage with the bandwidth advantage could yield approximately an order of magnitude communication performance improvement over today’s interconnects — say 10 to 20x better.

HPCwire: How do you see on-chip silicon photonics changing processor, memory, and motherboard designs?

Nadya Bliss: This is exactly the right question to ask. While alone the bandwidth and energy efficiency improvements are significant, the true power of integrated silicon photonics can be demonstrated by considering new architectures and instruction sets. The physical and performance characteristics of silicon photonics enable consideration of new network architectures, new memory hierarchies such as flatter, fewer levels of cache, and pushing parallelism into the hardware.

All of the current computer architecture trends point to multicore systems, with increasing number of cores on chip. Photonic interconnects have the potential to both balance the compute capability of emerging multicore and simplify the programming model by enabling balanced communication.

Realizing these potential benefits in future commercial systems will require significant advancements in high density, low cost optical packaging technology that can meet the reliability challenges.

HPCwire: What will be the impact on system software: the operating system, compilers, communication libraries, etc.?

Bliss: While any new technology has the potential to require new compilers, libraries, etc, the current multicore platforms and the on-chip and to-memory communication challenges are requiring a re-evaluation of programming models. New programming models are emerging that improve programmability, reducing the burden on the programmer, while also allowing the users to increase parallel efficiency of computation. Better communication/computation balance and pushing parallelism closer to the hardware has the potential of simplifying programming models and therefore associated compilers and libraries.

HPCwire: Will applications have to change to take advantage of on-chip photonics?

Bliss: I don’t think applications have to change per se, but new capabilities can be enabled, for example: more complex algorithms can be implemented in smaller form factors.

HPCwire: When do you think we can expect to see on-chip photonics makes its way into commercial silicon?

Bliss: Given the existing research efforts and pending successful demonstrations of both technologies and application capabilities, it is possible to imagine that this would happen over the next 5 to 10 years. To be honest, if it doesn’t, the programmability and performance challenges will continue to get worse and we will see decreased performance scaling in the near future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is stepping down after two years to return to Argonne National L Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

Exascale Computing Project Names Doug Kothe as Director

September 20, 2017

The Department of Energy’s Exascale Computing Project (ECP) has named Doug Kothe as its new director effective October 1. He replaces Paul Messina, who is s Read more…

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

  • arrow
  • Click Here for More Headlines
  • arrow
Share This