Integrated Photonics Coming of Age

By Nicole Hemsoth

November 17, 2011

Thanks to Moore’s Law and advances in silicon photonic fabrication, over the past 10 years more and more photonic components are being integrated onto chips. Such integration will present an opportunity for hardware engineers to reconsider basic computer designs.

That topic is the theme of a Disruptive Technology session at SC11 on Thursday, conducted by Keren Bergman of Columbia University and Nadya Bliss of MIT Lincoln Laboratory. In conjunction with photonic research at their respective organizations, Bergen and Bliss are working on the DARPA POEM Program (Photonically Optimized Embedded Microprocessor) led by Dr. Jagdeep Shah.

MIT Lincoln Laboratory’s role in the effort is to consider potential impact of silicon photonics on both applications and architectures. They are considering this problem both top down (i.e., what are the key application drivers that would benefit from or need performance advantage that photonic interconnects could provide) and bottom up (i.e., what possible architectural changes can be motivated by availability of photonic interconnects both on-chip and to memory).

At Columbia they have been developing an extensive suite of design tools for creating optically interconnected networks-on-chip that are physical layer accurate. This is the basis for their architectural design exploration and validation that the photonic technologies will function as intended.

Prior to their SC11 session, HPCwire asked Bergen and Bliss to discuss the technology issues surrounding integrated photonics and how it could impact computer systems, including HPC machines.

HPCwire: Where are photonic technologies deployed today and what are the main impacts it has had on computing to date?

Keren Bergman: Optical interconnects have historically been used in the longer distance connectivity of HPC systems to storage area networks. With increased bandwidth requirements optical links have been used for inter-rack cluster communications significantly reducing cabling congestion.

Current HPC systems with vastly increased parallelism have accelerated the need for communications bandwidth and driven optical interconnects further into backplane, even placing photonic technologies within the router package in the most advanced systems. Active cables have come into widespread use between racks. At modern 5 to 10 gigabits per second data rates, electrical cables don’t have adequate reach for this application in an HPC, and are far too bulky.

HPCwire: What is the current status of on-chip silicon photonics technology? What are some of the different approaches being explored?

Bergman: There has been significant progress in creating the key silicon photonics device components, however large scale monolithic integration with electrical circuitry in CMOS compatible processes remains a major challenge. Several schemes are currently under development for the integration of silicon photonic components with microelectronic components — both the transmitter and receiver circuits, and the microprocessor or memory components that will utilize the optical links.

The major approaches explored include front-end of CMOS line (FEOL) integration for building modulator and photodetector photonic circuitry and low-temperature processing where optical devices can be monolithically integrated with the metallization levels of the chip as a back-end of line (BEOL) fabrication step. The first use of silicon photonics utilizing some of these approaches appears to be in a module-based technology for the active optical cable market.

VCSEL-based optical modules are perhaps the most widely used technology today. Recent efforts have focused on approaches of directly integrating VCSELs onto the chip package.

HPCwire: How much better is on-chip silicon photonics compared to today’s copper interconnects?

Bergman: On-chip silicon photonic is a potentially disruptive communications platform for building high performance computing systems. Immense bandwidth densities are enabled by the low-loss single mode silicon photonic interconnect which can propagate numerous high bitrate — 40 to 100 gigabit per second — signals in dense WDM, corresponding to terabits per second in a single waveguide.

Furthermore, unlike electronic routing circuitry which requires individual switching elements for each data channel, a single broadband photonic switching element can route multiple high-bandwidth optical channels for the equivalent power of switching a single channel. The optical interconnect can therefore enable extremely high-bandwidth, low-latency end-to-end data transmission from on-chip to off-chip and potentially across the system without the need for power consuming repeaters, buffers, and regenerators.

Combining the power advantage with the bandwidth advantage could yield approximately an order of magnitude communication performance improvement over today’s interconnects — say 10 to 20x better.

HPCwire: How do you see on-chip silicon photonics changing processor, memory, and motherboard designs?

Nadya Bliss: This is exactly the right question to ask. While alone the bandwidth and energy efficiency improvements are significant, the true power of integrated silicon photonics can be demonstrated by considering new architectures and instruction sets. The physical and performance characteristics of silicon photonics enable consideration of new network architectures, new memory hierarchies such as flatter, fewer levels of cache, and pushing parallelism into the hardware.

All of the current computer architecture trends point to multicore systems, with increasing number of cores on chip. Photonic interconnects have the potential to both balance the compute capability of emerging multicore and simplify the programming model by enabling balanced communication.

Realizing these potential benefits in future commercial systems will require significant advancements in high density, low cost optical packaging technology that can meet the reliability challenges.

HPCwire: What will be the impact on system software: the operating system, compilers, communication libraries, etc.?

Bliss: While any new technology has the potential to require new compilers, libraries, etc, the current multicore platforms and the on-chip and to-memory communication challenges are requiring a re-evaluation of programming models. New programming models are emerging that improve programmability, reducing the burden on the programmer, while also allowing the users to increase parallel efficiency of computation. Better communication/computation balance and pushing parallelism closer to the hardware has the potential of simplifying programming models and therefore associated compilers and libraries.

HPCwire: Will applications have to change to take advantage of on-chip photonics?

Bliss: I don’t think applications have to change per se, but new capabilities can be enabled, for example: more complex algorithms can be implemented in smaller form factors.

HPCwire: When do you think we can expect to see on-chip photonics makes its way into commercial silicon?

Bliss: Given the existing research efforts and pending successful demonstrations of both technologies and application capabilities, it is possible to imagine that this would happen over the next 5 to 10 years. To be honest, if it doesn’t, the programmability and performance challenges will continue to get worse and we will see decreased performance scaling in the near future.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Democratization of HPC Part 3: Ninth Graders Tap HPC in the Cloud to Design Flying Boats

October 18, 2018

This is the third in a series of articles demonstrating the growing acceptance of high-performance computing (HPC) in new user communities and application areas. In this article we present UberCloud use case #208 on how Read more…

By Wolfgang Gentzsch and Håkon Bull Hove

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phase, on the near side of a difficult chasm to cross. In respon Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

One Small Step Toward Mars: One Giant Leap for Supercomputing

Since the days of the Space Race between the U.S. and the former Soviet Union, we have continually sought ways to perform experiments in space. Read more…

IBM Accelerated Insights

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questions and, you won’t be surprised, offers a firm “it’s wo Read more…

By John Russell

Penguin Computing Launches Consultancy for Piecing AI Strategies Together

October 18, 2018

AI stands before the HPC industry as a beacon of great expectations, yet market research repeatedly shows that AI adoption is commonly stuck in the talking phas Read more…

By Tiffany Trader

When Water Quality—Not Quantity—Hinders HPC Cooling

October 18, 2018

Attention has been paid to the sheer quantity of water consumed by supercomputers’ cooling towers – and rightly so, as they can require thousands of gallons per minute to cool. But in the background, another factor can emerge, bottlenecking efficiency and raising costs: water quality. Read more…

By Oliver Peckham

Paper Offers ‘Proof’ of Quantum Advantage on Some Problems

October 18, 2018

Is quantum computing worth all the effort being poured into it or should we just wait for classical computing to catch up? An IBM blog today posed those questio Read more…

By John Russell

Dell EMC to Supply U Michigan’s Great Lakes Cluster

October 16, 2018

The University of Michigan (U-M) today announced Dell EMC is the lead vendor for U-M’s $4.8 million Great Lakes HPC cluster scheduled for deployment in first Read more…

By John Russell

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Nvidia Platform Pushes GPUs into Machine Learning, High Performance Data Analytics

October 10, 2018

GPU leader Nvidia, generally associated with deep learning, autonomous vehicles and other higher-end enterprise and scientific workloads (and gaming, of course) Read more…

By Doug Black

Federal Investment in Exascale – What It Really Means

October 10, 2018

Earlier this month, the EuroHPC JU (Joint Undertaking) reached critical mass, and it seems all EU and affiliated member states, bar the UK (unsurprisingly), have or will sign on. The EuroHPC JU was born from a recognition that individual EU member states, and the EU as a whole, were significantly underinvesting in HPC compared to the US, China and Japan, who all have their own exascale investment and delivery strategies (NSCI, 13th 5 Year Plan, Post-K, etc). Read more…

By Dairsie Latimer

NERSC-9 Clues Found in NERSC 2017 Annual Report

October 8, 2018

If you’re eager to find out who’ll supply NERSC’s next-gen supercomputer, codenamed NERSC-9, here’s a project update to tide you over until the winning bid and system details are revealed. The upcoming system is referenced several times in the recently published 2017 NERSC annual report. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

Leading Solution Providers

HPC on Wall Street 2018 Booth Video Tours Playlist

Arista

Dell EMC

IBM

Intel

RStor

VMWare

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Aerodynamic Simulation Reveals Best Position in a Peloton of Cyclists

July 5, 2018

Eindhoven University of Technology (TU/e) and KU Leuven research group conducts the largest numerical simulation ever done in the sport industry and cycling discipline. The goal was to understand the aerodynamic interactions in the peloton, i.e., the main pack of cyclists in a race. Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This