The Bumpy Road to Exascale: A Q&A with Thomas Sterling

By Nicole Hemsoth

November 17, 2011

With a number of government and commercial exascale projects in full swing, SC11 has provided a convenient venue for vendors, academics and government types to tout their vision of the future of supercomputing. There is no one better to add some perspective on the status of the various exascale work than Thomas Sterling, Professor of Informatics and Computing Indiana University, and one of the foremost experts on supercomputing architectures. We talked to him before the conference about this topic as well as his about his own work on HPC runtime software.

HPCwire: Putting aside more special-purpose microprocessor architectures, such as the latest IBM Blue Gene/Q SoC, or Fujitsu’s SPARC64 VIIIfx processor that power the K Computer, for the mainstream HPC market, it looks like the biggest performance boost will come from GPUs, Intel’s upcoming MIC coprocessor, or the on-chip integration of these accelerators with more general-purpose CPU implementations, like x86 and ARM. Do you think this is an accurate assessment or do you see other architectural possibilities developing for HPC systems over the next few years?

Thomas Sterling: This is a period of transition with wide variation in computing components and mix thereof. I believe there are two issues regarding system architecture that are not being addressed by the current techniques you have identified. One relates to the memory system where the opportunity for embedded memory processors optimized for low energy, low latency, high bandwidth access needs to be supported. The second is the need for new functionality that supports the interoperability among the potentially billion cores that may comprise an exascale class system.

Such functionality although untried can greatly diminish overhead costs thereby improving scalability. Among such functions are new mechanisms for managing the global address space, likely for future generation systems. I anticipate that future systems will mix high throughput computing elements with arrays of embedded memory processor cores tightly coupled with the arrays of memory banks. Indeed, it is the more conventional CPUs that may ultimately go extinct or at least be relegated to subservient roles.

HPCwire: Do you see these architectures evolving in such a way as to enable exascale computing by 2020 or sooner, or do you think those early exascale machines, will, by necessity be built with special-purpose microprocessors?

Sterling: I am unclear as to the ultimate path of processor core evolution. We are in an era when the optimization of future HPC systems will de-emphasize the importance of processor utilization and highlight overhead and data movement costs in both time and energy. While there will be some resistance to change from prior processor designs due to the investments made over long periods of times and many codes, even as such processors enter their twilight.

There is an important convergence between the requirements of those cores integrated in the largest machines and those in the smallest machines such as mobile embedded systems. Size, energy, reliability all are key factors in both classes of system. I expect that the constituent cores of future supercomputers. How data and metadata is manipulated in the future both to extract parallelism and to support new forms of symbolic computing will force a redirection of cores.

But there will still be problems that may benefit from special structures like signal processing, GPU, or Anton-like SPDs. So, we can expect that heterogeneous system structures will become increasingly common. But how computation will be organized and coordinated has yet to be determined and will reflect the next execution model.

HPCwire: Do you see any commercial memory technologies in the works that will support exascale computing, or just more generally, address the memory wall problem we have in HPC — for example something like the Hybrid Memory Cube technology that Micron and others are pursuing?

Sterling: The opportunity to stack memory dies with each other and with multicore dies or communication interface chips interconnected by vias directly through the silicon substrates can dramatically alter the form and function of system components. It opens new opportunities for attacking the memory wall. This may very well be one of the most promising and dramatic advances in memory technology that could have significant impact on the commercial market.

HPCwire: You attended the International Exascale Software (IESP) meeting in Germany in October. What developments were discussed there? Do you think this work is on track?

We should congratulate our colleagues like Pete Beckman, Jack Dongarra, Paul Messina, Satoshi Matsuoka, and Bernd Mohr among others for their continuing efforts to nurture an international community dedicated to a common goal of creating a shared software stack for exascale computing. This is not an easy task nor is there a clear precedent for such a worldwide initiative. Yet, without it may be impractical for HPC to get much further than about 2015.

We are already experiencing ad hoc approaches to both hardware and software resulting in unfortunate dramatic increases in programming complexity. There are two overriding issues here: 1) what is the execution model or conceptual strategy required to guide the development of such a software stack, and 2) how will the work and credit be shared among and across the international stakeholders.

The first issue has elicited a dichotomy of views between those who favor an incremental strategy from the conventional methods and tools and those who, including myself, favor a revolutionary approach to meet the challenges of exascale. The first group correctly is concerned about the potential disruptive effects of addressing exascale through a process of replacement of key system component layers. The second group is possibly — I think probably — correct in their assertion that without a paradigm shift in the manner in which computation is organized and conducted that except in a few special cases there will not be adequate efficiency or scalability to fully employ systems capable of exaflops performance by 2020.

While there is a strong dominance of those who favor the conventional incremental approach, the IESP meeting in Cologne hosted one of its three working groups on the possibilities associated with “Revolutionary Approaches.” Bronis de Supinski of Lawrence Livermore National Laboratory and I co-chaired this session that involved more than 20 self-selected participants. The findings, I think were very professional and responsible and I thank my many colleagues for their contributions to this useful set of discussions. The report from this meeting will be made available.

With respect to the second issue, it is clear that there is emerging commitment and intention in at least three arenas in the northern hemisphere to play equal peer roles. Europe intends to position itself in a leadership role with its European Exascale Software Initiative (EESI) and both China and Japan have deployed premiere platforms on the world stage. For a future approach to exascale software to work, a meaningful international engagement will have to be negotiated. This has not yet been achieved.

The Cologne meeting was focused on European efforts, interests, and directions and indeed that discussion was continued the next week at the EESI meeting in Barcelona — while invited I unfortunately had an equally important conflict back in the US. The next IESP meeting will be convened in Kyoto in April. I believe these international discussions can begin to converge on a global strategy of cooperation.

But this will not work unless there is an overriding execution model to which all parties can agree and to which all component layers, wherever developed will be compliant. Otherwise, all we will have is a software stack of Babel.

HPCwire: Back in the US, you recently attend the DOE Exascale meeting? Any new developments on that front? How would you characterize the agency’s co-design approach?

Sterling: The DOE Exascale PI meeting was well attended and engaged the time and interest of much of the HPC systems and application development community. It is apparent that DOE is assuming the leadership role in the US in the development of critical enabling technologies, both hardware and software, for the future of high performance computing across this decade culminating in sustained Exaflops prior to 2020 if possible.

Under the leadership of Bill Harrod and Dan Hitchcock of ASCR with contributions from Sonia Sachs, Lenore Mullin, and Lucy Nowels there is emerging a strong multifaceted program being instituted in close cooperation with DOE NNSA under Bob Meisner and others. It is taking advantage of the strengths of its many national laboratories across the US as well as additional contributions from academia and industry. Key to its future success is the foundation principles of co-design, runtime introspection, and cross-cutting execution models driven by mission-critical applications.

The emergent DOE co-design approach is two-tiered: the co-design of HPC systems and applications, and intra-system between the component layers comprising the systems. An emphasis on quantitative modeling and evaluation, the use of abstract machines and their simulation guided by execution models, and the validation of design through full applications and their surrogate mini-apps are defining the future methodology potentially to be employed.

Of premiere importance is the continued support of ever larger and faster DOE-relevant applications without disruption throughout the decade. But it is also preparing for a potential paradigm shift that may prove essential to achieving the quantum leap to exascale and the system development as well as that of new application algorithms that may be required to ensure US competitiveness in the exascale era.

HPCwire: I saw very little mention of DARPA’s UHPC program at the conference, although it looks like you will be addressing recent experience of that effort at your Disruptive Technology presentation at SC11 on Thursday, here in Seattle. I’ve heard rumors that the program funding has been problematic. What is the status of the effort?

Sterling: The DARPA UHPC program when inaugurated was very exciting; indeed quite possibly the most exciting program in HPC in almost a decade. It was forward looking and was unambiguously aggressive in its research directions. While not formally an exascale project, the technologies, both hardware and software, if realized would have been capable of meeting exascale capabilities with the integration of a thousand racks or less; large but not unachievable.

As I’ve mentioned earlier, the issue of cross-cutting execution models is, as they always have been, crucial to any real paradigm shift and the UHPC program adopted this as one of its foundational principles. Four exceptional projects were selected by DARPA to go forward with the first two-year phase including the X-caliber project of which I am fortunate to be a part primed by Sandia National Laboratories and led by Richard Murphy.

But as you point out, there is some question about the future of this program as DARPA, I suppose in its infinite wisdom, reconsiders its commitment to this form of future computing and its role on behalf of the security of our nation.

My opinion may not matter much but for what it is worth, I believe that leadership in HPC is essential for the welfare of the US, its defense, its base of skills, and its economy. I would like to see our leaders precede with this program that took years to organize to give the Department of Defense the cutting edge computational tools it needs in support of our men and women in uniform and the citizens of America they safeguard.

We are in a leadership position now in HPC technology. But it is much harder to play catch-up after we slip behind than maintaining our position of staying up in front. I hope DARPA sees that.
 
HPCwire: Turning back to your Disruptive Technology session, tell us a little bit about the runtime and execution model you’ll be presenting. In a nutshell, what is it about and what makes it disruptive?

Sterling: As controversial as the idea is, I believe we are facing a major paradigm shift in parallel computing to address the many new challenges that recent advances in the underlying enabling technologies impose. This has happened at least five times before in the history of HPC. We can all see clear manifestations of such advances with multicore, GPUs, and even special purpose devices.

But other signs such as low efficiencies, increasing numbers of applications that do not scale well, and multiple layers of programming models, for example, MPI+OpenMP+CUDA, are all indicators that the dominant conventional execution model, communicating sequential processes, after two decades of success is no longer serving current needs let alone providing a path to the future.

My brief presentation at the Disruptive Technology session will describe key attributes of a future execution model that may address many of these problems. The experimental ParalleX execution model integrates some prior art and a few innovative ideas to provide a new strategy — in the sense of distinguished from usual practice — for attacking current limitations in node efficiency and scalability both of which will be required to achieve practical exascale performance within this decade.

This includes critical power and reliability conditions. Exposing and exploiting new forms of parallelism, of reducing and hiding the effects of latency, minimizing control overheads, and circumventing blocking on shared physical and logical resources all need to be achieved through the concepts of a new execution model and the development of the hardware and software component layers that will fulfill its functionality. There is no magic here and many have considered similar forms at least in part of this class of computation before with some ideas going back two or three decades.

ParalleX presumes the exploitation of continuous runtime information to dynamically adjust resource management and task scheduling. It employs a global name space that extends beyond PGAS to permit the migration of virtual objects in physical space for load balancing, reliability, and energy management as well as low overhead accesses. It uses an advanced form of active messages for message-driven computing to both reduce and hide latencies through moving work to the data when appropriate and even migrating continuations across physical space to unpin control state. Lightweight sophisticated synchronization for declarative control eliminating barriers and manages asynchrony while ensuring correctness of parallel execution, at least at these points, not universally unfortunately. The ParalleX model is developing semantics for fault tolerance and energy management.

An experimental runtime system, HPX-3, has been developed at LSU by a team led by Hartmut Kaiser that demonstrates the central features of this model and is being used for extensive application experiments and system measurements.

The reason why this qualifies as a disruptive technology is that to fully benefit from its integral features will require new programming models and probably changes to future system architectures as well of course a new generation of HPC runtime systems, like HPX, to support it.

Another runtime system, SWARM, developed by ET International also exhibits many of these same principles. The question of how to migrate legacy codes to such an environment let alone how to extract superior performance for them relative to their native implementations in unknown although to achieve equality is anticipated to be possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

LRZ Adds Mega AI Aystem as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Nvidia Launches Four Arm-based Grace Server Designs

May 25, 2022

Nvidia is lining up Arm-based server platforms for a diverse range of HPC, AI and cloud applications. The new systems employ Nvidia’s custom Grace Arm CPUs in four different configurations, including a Grace Hopper HGX Read more…

Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Durham University to Test Rockport Networks on COSMA7 Supercomputer

May 24, 2022

Durham University’s Institute for Computational Cosmology (ICC) is home to the COSMA series of supercomputers (short for “cosmological machine”). COSMA—now in its eighth iteration, COSMA8—has been working to an Read more…

SoftIron Measures Its Carbon Footprint to Make a Point

May 24, 2022

Since its founding in 2012, London-based software-defined storage provider SoftIron has been making its case for what it calls secure provenance: a term that encompasses the company’s rigorous accounting of the supply Read more…

AWS Solution Channel

Shutterstock 1044740602

DTN Doubles Weather Forecasting Performance Using Amazon EC2 Hpc6a Instances

Organizations in weather-sensitive industries need highly accurate and near-real-time weather intelligence to make adept business decisions. Many companies in these industries rely on information from DTN, a global data, analytics, and technology company, for that information. Read more…

TACC Adds Details to Vision for Leadership-Class Computing Facility

May 23, 2022

The Texas Advanced Computing Center (TACC) at The University of Texas at Austin passed to the next phase of the planning process for the Leadership-Class Computing Facility (LCCF), a process that has many approval stage Read more…

LRZ Adds Mega AI Aystem as It Stacks up on Future Computing Systems

May 25, 2022

The battle among high-performance computing hubs to stack up on cutting-edge computers for quicker time to science is getting steamy as new chip technologies become mainstream. A European supercomputing hub near Munich, called the Leibniz Supercomputing Centre, is deploying Cerebras Systems' CS-2 AI system as part of an internal initiative called Future Computing to assess alternative computing... Read more…

Nvidia Launches Four Arm-based Grace Server Designs

May 25, 2022

Nvidia is lining up Arm-based server platforms for a diverse range of HPC, AI and cloud applications. The new systems employ Nvidia’s custom Grace Arm CPUs in Read more…

Nvidia Bakes Liquid Cooling into PCIe GPU Cards

May 24, 2022

Nvidia is bringing liquid cooling, which it typically puts alongside GPUs on the high-performance computing systems, to its mainstream server GPU portfolio. The company will start shipping its A100 PCIe Liquid Cooled GPU, which is based on the Ampere architecture, for servers later this year. The liquid-cooled GPU based on the company's new Hopper architecture for PCIe slots will ship early next year. Read more…

Durham University to Test Rockport Networks on COSMA7 Supercomputer

May 24, 2022

Durham University’s Institute for Computational Cosmology (ICC) is home to the COSMA series of supercomputers (short for “cosmological machine”). COSMA— Read more…

SoftIron Measures Its Carbon Footprint to Make a Point

May 24, 2022

Since its founding in 2012, London-based software-defined storage provider SoftIron has been making its case for what it calls secure provenance: a term that en Read more…

ISC 2022: International Association of Supercomputing Centers to Debut

May 23, 2022

At ISC 2022 in Hamburg, Germany, representatives from four supercomputing centers across three countries plan to debut the International Association of Supercom Read more…

ANL Special Colloquium on The Future of Computing

May 19, 2022

There are, of course, a myriad of ideas regarding computing’s future. At yesterday’s Argonne National Laboratory’s Director’s Special Colloquium, The Future of Computing, guest speaker Sadasivan Shankar, did his best to convince the audience that the high-energy cost of the current computing paradigm – not (just) economic cost; we’re talking entropy here – is fundamentally undermining computing’s progress such that... Read more…

HPE Announces New HPC Factory in Czech Republic

May 18, 2022

A week ahead of ISC High Performance 2022 (set to be held in Hamburg, Germany), supercomputing heavyweight HPE has announced a major investment in sovereign Eur Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

In Partnership with IBM, Canada to Get Its First Universal Quantum Computer

February 3, 2022

IBM today announced it will deploy its first quantum computer in Canada, putting Canada on a short list of countries that will have access to an IBM Quantum Sys Read more…

Supercomputer Simulations Show How Paxlovid, Pfizer’s Covid Antiviral, Works

February 3, 2022

Just about a month ago, Pfizer scored its second huge win of the pandemic when the U.S. Food and Drug Administration issued another emergency use authorization Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

Leading Solution Providers

Contributors

D-Wave to Go Public with SPAC Deal; Expects ~$1.6B Market Valuation

February 8, 2022

Quantum computing pioneer D-Wave today announced plans to go public via a SPAC (special purpose acquisition company) mechanism. D-Wave will merge with DPCM Capital in a transaction expected to produce $340 million in cash and result in a roughly $1.6 billion initial market valuation. The deal is expected to be completed in the second quarter of 2022 and the new company will be traded on the New York Stock... Read more…

Intel Announces Falcon Shores CPU-GPU Combo Architecture for 2024

February 18, 2022

Intel held its 2022 investor meeting yesterday, covering everything from the imminent Sapphire Rapids CPUs to the hotly anticipated (and delayed) Ponte Vecchio GPUs. But somewhat buried in its summary of the meeting was a new namedrop: “Falcon Shores,” described as “a new architecture that will bring x86 and Xe GPU together into a single socket.” The reveal was... Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

Facebook Parent Meta’s New AI Supercomputer Will Be ‘World’s Fastest’

January 24, 2022

Fresh off its rebrand last October, Meta (née Facebook) is putting muscle behind its vision of a metaversal future with a massive new AI supercomputer called the AI Research SuperCluster (RSC). Meta says that RSC will be used to help build new AI models, develop augmented reality tools, seamlessly analyze multimedia data and more. The supercomputer’s... Read more…

Nvidia Acquires Software-Defined Storage Provider Excelero

March 7, 2022

Nvidia has announced that it has acquired Excelero. The high-performance block storage provider, founded in 2014, will have its technology integrated into Nvidia’s enterprise software stack. Nvidia is not disclosing the value of the deal. Excelero’s core product, Excelero NVMesh, offers software-defined block storage via networked NVMe SSDs. NVMesh operates through... Read more…

Nvidia Announces ‘Eos’ Supercomputer

March 22, 2022

At GTC22 today, Nvidia unveiled its new H100 GPU, the first of its new ‘Hopper’ architecture, along with a slew of accompanying configurations, systems and Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire