The Bumpy Road to Exascale: A Q&A with Thomas Sterling

By Nicole Hemsoth

November 17, 2011

With a number of government and commercial exascale projects in full swing, SC11 has provided a convenient venue for vendors, academics and government types to tout their vision of the future of supercomputing. There is no one better to add some perspective on the status of the various exascale work than Thomas Sterling, Professor of Informatics and Computing Indiana University, and one of the foremost experts on supercomputing architectures. We talked to him before the conference about this topic as well as his about his own work on HPC runtime software.

HPCwire: Putting aside more special-purpose microprocessor architectures, such as the latest IBM Blue Gene/Q SoC, or Fujitsu’s SPARC64 VIIIfx processor that power the K Computer, for the mainstream HPC market, it looks like the biggest performance boost will come from GPUs, Intel’s upcoming MIC coprocessor, or the on-chip integration of these accelerators with more general-purpose CPU implementations, like x86 and ARM. Do you think this is an accurate assessment or do you see other architectural possibilities developing for HPC systems over the next few years?

Thomas Sterling: This is a period of transition with wide variation in computing components and mix thereof. I believe there are two issues regarding system architecture that are not being addressed by the current techniques you have identified. One relates to the memory system where the opportunity for embedded memory processors optimized for low energy, low latency, high bandwidth access needs to be supported. The second is the need for new functionality that supports the interoperability among the potentially billion cores that may comprise an exascale class system.

Such functionality although untried can greatly diminish overhead costs thereby improving scalability. Among such functions are new mechanisms for managing the global address space, likely for future generation systems. I anticipate that future systems will mix high throughput computing elements with arrays of embedded memory processor cores tightly coupled with the arrays of memory banks. Indeed, it is the more conventional CPUs that may ultimately go extinct or at least be relegated to subservient roles.

HPCwire: Do you see these architectures evolving in such a way as to enable exascale computing by 2020 or sooner, or do you think those early exascale machines, will, by necessity be built with special-purpose microprocessors?

Sterling: I am unclear as to the ultimate path of processor core evolution. We are in an era when the optimization of future HPC systems will de-emphasize the importance of processor utilization and highlight overhead and data movement costs in both time and energy. While there will be some resistance to change from prior processor designs due to the investments made over long periods of times and many codes, even as such processors enter their twilight.

There is an important convergence between the requirements of those cores integrated in the largest machines and those in the smallest machines such as mobile embedded systems. Size, energy, reliability all are key factors in both classes of system. I expect that the constituent cores of future supercomputers. How data and metadata is manipulated in the future both to extract parallelism and to support new forms of symbolic computing will force a redirection of cores.

But there will still be problems that may benefit from special structures like signal processing, GPU, or Anton-like SPDs. So, we can expect that heterogeneous system structures will become increasingly common. But how computation will be organized and coordinated has yet to be determined and will reflect the next execution model.

HPCwire: Do you see any commercial memory technologies in the works that will support exascale computing, or just more generally, address the memory wall problem we have in HPC — for example something like the Hybrid Memory Cube technology that Micron and others are pursuing?

Sterling: The opportunity to stack memory dies with each other and with multicore dies or communication interface chips interconnected by vias directly through the silicon substrates can dramatically alter the form and function of system components. It opens new opportunities for attacking the memory wall. This may very well be one of the most promising and dramatic advances in memory technology that could have significant impact on the commercial market.

HPCwire: You attended the International Exascale Software (IESP) meeting in Germany in October. What developments were discussed there? Do you think this work is on track?

We should congratulate our colleagues like Pete Beckman, Jack Dongarra, Paul Messina, Satoshi Matsuoka, and Bernd Mohr among others for their continuing efforts to nurture an international community dedicated to a common goal of creating a shared software stack for exascale computing. This is not an easy task nor is there a clear precedent for such a worldwide initiative. Yet, without it may be impractical for HPC to get much further than about 2015.

We are already experiencing ad hoc approaches to both hardware and software resulting in unfortunate dramatic increases in programming complexity. There are two overriding issues here: 1) what is the execution model or conceptual strategy required to guide the development of such a software stack, and 2) how will the work and credit be shared among and across the international stakeholders.

The first issue has elicited a dichotomy of views between those who favor an incremental strategy from the conventional methods and tools and those who, including myself, favor a revolutionary approach to meet the challenges of exascale. The first group correctly is concerned about the potential disruptive effects of addressing exascale through a process of replacement of key system component layers. The second group is possibly — I think probably — correct in their assertion that without a paradigm shift in the manner in which computation is organized and conducted that except in a few special cases there will not be adequate efficiency or scalability to fully employ systems capable of exaflops performance by 2020.

While there is a strong dominance of those who favor the conventional incremental approach, the IESP meeting in Cologne hosted one of its three working groups on the possibilities associated with “Revolutionary Approaches.” Bronis de Supinski of Lawrence Livermore National Laboratory and I co-chaired this session that involved more than 20 self-selected participants. The findings, I think were very professional and responsible and I thank my many colleagues for their contributions to this useful set of discussions. The report from this meeting will be made available.

With respect to the second issue, it is clear that there is emerging commitment and intention in at least three arenas in the northern hemisphere to play equal peer roles. Europe intends to position itself in a leadership role with its European Exascale Software Initiative (EESI) and both China and Japan have deployed premiere platforms on the world stage. For a future approach to exascale software to work, a meaningful international engagement will have to be negotiated. This has not yet been achieved.

The Cologne meeting was focused on European efforts, interests, and directions and indeed that discussion was continued the next week at the EESI meeting in Barcelona — while invited I unfortunately had an equally important conflict back in the US. The next IESP meeting will be convened in Kyoto in April. I believe these international discussions can begin to converge on a global strategy of cooperation.

But this will not work unless there is an overriding execution model to which all parties can agree and to which all component layers, wherever developed will be compliant. Otherwise, all we will have is a software stack of Babel.

HPCwire: Back in the US, you recently attend the DOE Exascale meeting? Any new developments on that front? How would you characterize the agency’s co-design approach?

Sterling: The DOE Exascale PI meeting was well attended and engaged the time and interest of much of the HPC systems and application development community. It is apparent that DOE is assuming the leadership role in the US in the development of critical enabling technologies, both hardware and software, for the future of high performance computing across this decade culminating in sustained Exaflops prior to 2020 if possible.

Under the leadership of Bill Harrod and Dan Hitchcock of ASCR with contributions from Sonia Sachs, Lenore Mullin, and Lucy Nowels there is emerging a strong multifaceted program being instituted in close cooperation with DOE NNSA under Bob Meisner and others. It is taking advantage of the strengths of its many national laboratories across the US as well as additional contributions from academia and industry. Key to its future success is the foundation principles of co-design, runtime introspection, and cross-cutting execution models driven by mission-critical applications.

The emergent DOE co-design approach is two-tiered: the co-design of HPC systems and applications, and intra-system between the component layers comprising the systems. An emphasis on quantitative modeling and evaluation, the use of abstract machines and their simulation guided by execution models, and the validation of design through full applications and their surrogate mini-apps are defining the future methodology potentially to be employed.

Of premiere importance is the continued support of ever larger and faster DOE-relevant applications without disruption throughout the decade. But it is also preparing for a potential paradigm shift that may prove essential to achieving the quantum leap to exascale and the system development as well as that of new application algorithms that may be required to ensure US competitiveness in the exascale era.

HPCwire: I saw very little mention of DARPA’s UHPC program at the conference, although it looks like you will be addressing recent experience of that effort at your Disruptive Technology presentation at SC11 on Thursday, here in Seattle. I’ve heard rumors that the program funding has been problematic. What is the status of the effort?

Sterling: The DARPA UHPC program when inaugurated was very exciting; indeed quite possibly the most exciting program in HPC in almost a decade. It was forward looking and was unambiguously aggressive in its research directions. While not formally an exascale project, the technologies, both hardware and software, if realized would have been capable of meeting exascale capabilities with the integration of a thousand racks or less; large but not unachievable.

As I’ve mentioned earlier, the issue of cross-cutting execution models is, as they always have been, crucial to any real paradigm shift and the UHPC program adopted this as one of its foundational principles. Four exceptional projects were selected by DARPA to go forward with the first two-year phase including the X-caliber project of which I am fortunate to be a part primed by Sandia National Laboratories and led by Richard Murphy.

But as you point out, there is some question about the future of this program as DARPA, I suppose in its infinite wisdom, reconsiders its commitment to this form of future computing and its role on behalf of the security of our nation.

My opinion may not matter much but for what it is worth, I believe that leadership in HPC is essential for the welfare of the US, its defense, its base of skills, and its economy. I would like to see our leaders precede with this program that took years to organize to give the Department of Defense the cutting edge computational tools it needs in support of our men and women in uniform and the citizens of America they safeguard.

We are in a leadership position now in HPC technology. But it is much harder to play catch-up after we slip behind than maintaining our position of staying up in front. I hope DARPA sees that.
 
HPCwire: Turning back to your Disruptive Technology session, tell us a little bit about the runtime and execution model you’ll be presenting. In a nutshell, what is it about and what makes it disruptive?

Sterling: As controversial as the idea is, I believe we are facing a major paradigm shift in parallel computing to address the many new challenges that recent advances in the underlying enabling technologies impose. This has happened at least five times before in the history of HPC. We can all see clear manifestations of such advances with multicore, GPUs, and even special purpose devices.

But other signs such as low efficiencies, increasing numbers of applications that do not scale well, and multiple layers of programming models, for example, MPI+OpenMP+CUDA, are all indicators that the dominant conventional execution model, communicating sequential processes, after two decades of success is no longer serving current needs let alone providing a path to the future.

My brief presentation at the Disruptive Technology session will describe key attributes of a future execution model that may address many of these problems. The experimental ParalleX execution model integrates some prior art and a few innovative ideas to provide a new strategy — in the sense of distinguished from usual practice — for attacking current limitations in node efficiency and scalability both of which will be required to achieve practical exascale performance within this decade.

This includes critical power and reliability conditions. Exposing and exploiting new forms of parallelism, of reducing and hiding the effects of latency, minimizing control overheads, and circumventing blocking on shared physical and logical resources all need to be achieved through the concepts of a new execution model and the development of the hardware and software component layers that will fulfill its functionality. There is no magic here and many have considered similar forms at least in part of this class of computation before with some ideas going back two or three decades.

ParalleX presumes the exploitation of continuous runtime information to dynamically adjust resource management and task scheduling. It employs a global name space that extends beyond PGAS to permit the migration of virtual objects in physical space for load balancing, reliability, and energy management as well as low overhead accesses. It uses an advanced form of active messages for message-driven computing to both reduce and hide latencies through moving work to the data when appropriate and even migrating continuations across physical space to unpin control state. Lightweight sophisticated synchronization for declarative control eliminating barriers and manages asynchrony while ensuring correctness of parallel execution, at least at these points, not universally unfortunately. The ParalleX model is developing semantics for fault tolerance and energy management.

An experimental runtime system, HPX-3, has been developed at LSU by a team led by Hartmut Kaiser that demonstrates the central features of this model and is being used for extensive application experiments and system measurements.

The reason why this qualifies as a disruptive technology is that to fully benefit from its integral features will require new programming models and probably changes to future system architectures as well of course a new generation of HPC runtime systems, like HPX, to support it.

Another runtime system, SWARM, developed by ET International also exhibits many of these same principles. The question of how to migrate legacy codes to such an environment let alone how to extract superior performance for them relative to their native implementations in unknown although to achieve equality is anticipated to be possible.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

Xilinx Says Its New FPGA is World’s Largest

August 21, 2019

In this age of exploding “technology disaggregation” – in which the Big Bang emanating from the Intel x86 CPU has produced significant advances in CPU chips and a raft of alternative, accelerated architectures... Read more…

By Doug Black

Supercomputers Generate Universes to Illuminate Galactic Formation

August 20, 2019

With advanced imaging and satellite technologies, it’s easier than ever to see a galaxy – but understanding how they form (a process that can take billions of years) is a different story. Now, a team of researchers f Read more…

By Oliver Peckham

AWS Solution Channel

Efficiency and Cost-Optimization for HPC Workloads – AWS Batch and Amazon EC2 Spot Instances

High Performance Computing on AWS leverages the power of cloud computing and the extreme scale it offers to achieve optimal HPC price/performance. With AWS you can right size your services to meet exactly the capacity requirements you need without having to overprovision or compromise capacity. Read more…

HPE Extreme Performance Solutions

Bring the combined power of HPC and AI to your business transformation

FPGA (Field Programmable Gate Array) acceleration cards are not new, as they’ve been commercially available since 1984. Typically, the emphasis around FPGAs has centered on the fact that they’re programmable accelerators, and that they can truly offer workload specific hardware acceleration solutions without requiring custom silicon. Read more…

IBM Accelerated Insights

Keys to Attracting the Newest HPC Talent – Post-Millennials

[Connect with HPC users and learn new skills in the IBM Spectrum LSF User Community.]

For engineers and scientists growing up in the 80s, the current state of HPC makes perfect sense. Read more…

Singularity Moves Up the Container Value Chain

August 20, 2019

The enterprise version of the Singularity HPC container platform released this week by Sylabs is designed to allow users to create, secure and share the high-end containers in self-hosted production deployments. The e Read more…

By George Leopold

At Long Last, Supercomputing Helps to Map the Poles

August 22, 2019

“For years,” Paul Morin wrote, “those of us that made maps of the Poles apologized. We apologized for the blank spaces on maps, we apologized for mountains being in the wrong place and out-of-date information.” Read more…

By Oliver Peckham

IBM Deepens Plunge into Open Source; OpenPOWER to Join Linux Foundation

August 20, 2019

IBM today announced it was contributing the instruction set (ISA) for its Power microprocessor and the designs for the Open Coherent Accelerator Processor Inter Read more…

By John Russell

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

Scientists to Tap Exascale Computing to Unlock the Mystery of our Accelerating Universe

August 14, 2019

The universe and everything in it roared to life with the Big Bang approximately 13.8 billion years ago. It has continued expanding ever since. While we have a Read more…

By Rob Johnson

AI is the Next Exascale – Rick Stevens on What that Means and Why It’s Important

August 13, 2019

Twelve years ago the Department of Energy (DOE) was just beginning to explore what an exascale computing program might look like and what it might accomplish. Today, DOE is repeating that process for AI, once again starting with science community town halls to gather input and stimulate conversation. The town hall program... Read more…

By Tiffany Trader and John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

Lenovo Drives Single-Socket Servers with AMD Epyc Rome CPUs

August 7, 2019

No summer doldrums here. As part of the AMD Epyc Rome launch event in San Francisco today, Lenovo announced two new single-socket servers, the ThinkSystem SR635 Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Supercomputer-Powered AI Tackles a Key Fusion Energy Challenge

August 7, 2019

Fusion energy is the Holy Grail of the energy world: low-radioactivity, low-waste, zero-carbon, high-output nuclear power that can run on hydrogen or lithium. T Read more…

By Oliver Peckham

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

AMD Launches Epyc Rome, First 7nm CPU

August 8, 2019

From a gala event at the Palace of Fine Arts in San Francisco yesterday (Aug. 7), AMD launched its second-generation Epyc Rome x86 chips, based on its 7nm proce Read more…

By Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This