NVIDIA Offers Exascale Vision at SC11

By Michael Feldman

November 18, 2011

When NVIDIA CEO Jen-Hsun Huang delivered his keynote at SC11 this week, it was easy to forget that a few short years ago, the company and its GPU products had absolutely nothing to do with supercomputing. Today, of course, the technology is a driving force in the HPC ecosystem and is challenging the entrenched interests of chip makers Intel, AMD, and IBM.

Not that GPUs are a huge revenue generator for NVIDIA just yet. Of the company’s $3.3 billion in annual revenue, just $100 million can be attributed to HPC Tesla sales. “We haven’t turned it into a great business yet,” Huang told HPCwire, after Tuesday’s keynote.

NVIDIA’s journey down the HPC path did not begin the company boardroom, however. According to Huang, the most important day for GPU computing happened several years ago when two doctors from Massachusetts General Hospital in Boston approached NVIDIA with idea of using their GPUs for computed tomography (CT) imaging reconstruction to detect breast cancer.

The problem with the hospital’s current setup was that an HPC cluster was needed to for the compute-intensive rendering of the CT scans. The doctors wanted to shrink this work down onto a workstation and had heard these new-fangled things in GPUs called programmable shaders might make it possible tap into the floating point power of graphics processors.

Sure enough the GPUs work as expected, and they were able to reduce CT rendering times, improving the whole diagnostic workflow. Although Mass General only bought two graphics cards for their needs at the time, Huang says GPUs are now the de facto rendering accelerator and are in 100 percent of CT scanners today.

The rest, as they say, is history. Today all of the HPC OEMs offer NVIDIA GPU-equipped systems of one sort or another, and system deployments are on the rise. According to IDC, 28 percent of HPC sites were using accelerators in 2010 — predominantly NVIDIA GPUs — from a standing start of zero in 2005.

At the top of the HPC food chain, there are 35 TOP500 systems with NVIDIA GPUs (twice as many as in June). Of these, three of the top five supercomputers are equipped with GPUs, with more on the way in 2012 with the 20-petaflop Titan system at Oak Ridge National Lab and the 11.5 petaflop Blue Waters super at NCSA.

Most of the popularity of this architecture for HPC rests on the fact that NVIDIA’s GPUs are ubiquitous in the adjacent areas of computing. Today there are 350 million or so CUDA-capable GPUs that have been shipped, the majority of which are in desktops and laptops, and this has attracted over 120 thousand CUDA developers. As a result, CUDA programming is being taught at nearly five hundred universities around the world.

In Huang’s SC11 keynote, he pointed out that the rise of HPC-style GPU computing has come about because traditional CPUs, especially x86 ones, have become rather inefficient at compute- and data-intensive computation. For example, he said CPUs use 50 times the energy to schedule the instructions and 20 times the energy to move the data than doing the actual calculation.

GPUs, by contrast, are designed to reduce data movement, and although they have poor single threaded performance because of their simple processing engines, there are many more of them to do the work in parallel. That makes for more efficient computation, assuming the application can be molded into the GPU computing model.

Huang believes the demand for energy efficient HPC flops will work in NVIDIA’s favor, noting that “supercomputers have become power limited. — just like cell phones, just like tablets.” From his perspective, future GPUs will be the platform of choice to power exaflop machines. And although Huang said those supercomputers will be able to perform at that level with just 20 MW, his crystal ball doesn’t have that happening until 2022.

In that timeframe, a second or third generation integrated ARM-GPU processor will be the most likely design. NVIDIA’s “Maxwell” GPU generation, scheduled to make its appearance in the middle of the decade, is slated to be the first NVIDIA platform to integrate their upcoming “Project Denver” ARM CPU, a homegrown design that will become the basis for all of the company’s product lines. From then on, it’s safe to assume that integration will just get tighter. By 2022, it may not make much sense to even refer to these heterogeneous processors as GPUs anymore.

NVIDIA’s early lead in the HPC accelerator business is not insurmountable though. Intel is also positioning itself to be the dominant chip maker of the exascale era, drawing its own line in the sand with a target of 2018 for an Intel-powered exaflop machine. The most likely processor design for such a system will involve Xeon cores integrated with MIC cores on the same chip, although no public plans to that effect have been aired.

AMD has been more equivocal with regard to its exascale aspirations, but the company has certainly been the early mover in heterogeneous CPU-GPU designs with its Fusion APU architecture. Their near-term plans involve putting high-end “Bulldozer” cores into an APU next year as well as adding ECC to their GPU computing line.

Their could be other vendors to challenge NVIDIA and its competitors for the future of supercomputing. Texas Instruments, for example, has just officially launched a floating point DSP with rather impressive performance/watt numbers that is being cross-targeted to HPC. Other ARM vendors could get into the act too, especially if the chip is able to establish itself in the server space with the upcoming 64-bit designs.

The lesson of NVIDIA, pointed out by Huang in his keynote, is that disruptive technologies, like GPU computing, often emerge from new products, like cell phones and tablets, which quickly ramp into volume markets. And although NVIDIA has managed to exploit that phenomenon very effectively for HPC over the last five years, it is unlikely to be the last company to do so. The volume market for the processor of the exascale era may not even exist yet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This