NVIDIA Offers Exascale Vision at SC11

By Michael Feldman

November 18, 2011

When NVIDIA CEO Jen-Hsun Huang delivered his keynote at SC11 this week, it was easy to forget that a few short years ago, the company and its GPU products had absolutely nothing to do with supercomputing. Today, of course, the technology is a driving force in the HPC ecosystem and is challenging the entrenched interests of chip makers Intel, AMD, and IBM.

Not that GPUs are a huge revenue generator for NVIDIA just yet. Of the company’s $3.3 billion in annual revenue, just $100 million can be attributed to HPC Tesla sales. “We haven’t turned it into a great business yet,” Huang told HPCwire, after Tuesday’s keynote.

NVIDIA’s journey down the HPC path did not begin the company boardroom, however. According to Huang, the most important day for GPU computing happened several years ago when two doctors from Massachusetts General Hospital in Boston approached NVIDIA with idea of using their GPUs for computed tomography (CT) imaging reconstruction to detect breast cancer.

The problem with the hospital’s current setup was that an HPC cluster was needed to for the compute-intensive rendering of the CT scans. The doctors wanted to shrink this work down onto a workstation and had heard these new-fangled things in GPUs called programmable shaders might make it possible tap into the floating point power of graphics processors.

Sure enough the GPUs work as expected, and they were able to reduce CT rendering times, improving the whole diagnostic workflow. Although Mass General only bought two graphics cards for their needs at the time, Huang says GPUs are now the de facto rendering accelerator and are in 100 percent of CT scanners today.

The rest, as they say, is history. Today all of the HPC OEMs offer NVIDIA GPU-equipped systems of one sort or another, and system deployments are on the rise. According to IDC, 28 percent of HPC sites were using accelerators in 2010 — predominantly NVIDIA GPUs — from a standing start of zero in 2005.

At the top of the HPC food chain, there are 35 TOP500 systems with NVIDIA GPUs (twice as many as in June). Of these, three of the top five supercomputers are equipped with GPUs, with more on the way in 2012 with the 20-petaflop Titan system at Oak Ridge National Lab and the 11.5 petaflop Blue Waters super at NCSA.

Most of the popularity of this architecture for HPC rests on the fact that NVIDIA’s GPUs are ubiquitous in the adjacent areas of computing. Today there are 350 million or so CUDA-capable GPUs that have been shipped, the majority of which are in desktops and laptops, and this has attracted over 120 thousand CUDA developers. As a result, CUDA programming is being taught at nearly five hundred universities around the world.

In Huang’s SC11 keynote, he pointed out that the rise of HPC-style GPU computing has come about because traditional CPUs, especially x86 ones, have become rather inefficient at compute- and data-intensive computation. For example, he said CPUs use 50 times the energy to schedule the instructions and 20 times the energy to move the data than doing the actual calculation.

GPUs, by contrast, are designed to reduce data movement, and although they have poor single threaded performance because of their simple processing engines, there are many more of them to do the work in parallel. That makes for more efficient computation, assuming the application can be molded into the GPU computing model.

Huang believes the demand for energy efficient HPC flops will work in NVIDIA’s favor, noting that “supercomputers have become power limited. — just like cell phones, just like tablets.” From his perspective, future GPUs will be the platform of choice to power exaflop machines. And although Huang said those supercomputers will be able to perform at that level with just 20 MW, his crystal ball doesn’t have that happening until 2022.

In that timeframe, a second or third generation integrated ARM-GPU processor will be the most likely design. NVIDIA’s “Maxwell” GPU generation, scheduled to make its appearance in the middle of the decade, is slated to be the first NVIDIA platform to integrate their upcoming “Project Denver” ARM CPU, a homegrown design that will become the basis for all of the company’s product lines. From then on, it’s safe to assume that integration will just get tighter. By 2022, it may not make much sense to even refer to these heterogeneous processors as GPUs anymore.

NVIDIA’s early lead in the HPC accelerator business is not insurmountable though. Intel is also positioning itself to be the dominant chip maker of the exascale era, drawing its own line in the sand with a target of 2018 for an Intel-powered exaflop machine. The most likely processor design for such a system will involve Xeon cores integrated with MIC cores on the same chip, although no public plans to that effect have been aired.

AMD has been more equivocal with regard to its exascale aspirations, but the company has certainly been the early mover in heterogeneous CPU-GPU designs with its Fusion APU architecture. Their near-term plans involve putting high-end “Bulldozer” cores into an APU next year as well as adding ECC to their GPU computing line.

Their could be other vendors to challenge NVIDIA and its competitors for the future of supercomputing. Texas Instruments, for example, has just officially launched a floating point DSP with rather impressive performance/watt numbers that is being cross-targeted to HPC. Other ARM vendors could get into the act too, especially if the chip is able to establish itself in the server space with the upcoming 64-bit designs.

The lesson of NVIDIA, pointed out by Huang in his keynote, is that disruptive technologies, like GPU computing, often emerge from new products, like cell phones and tablets, which quickly ramp into volume markets. And although NVIDIA has managed to exploit that phenomenon very effectively for HPC over the last five years, it is unlikely to be the last company to do so. The volume market for the processor of the exascale era may not even exist yet.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a community infrastructure in support of machine learning research Read more…

By John Russell

DARPA Continues Investment in Post-Moore’s Technologies

July 24, 2017

The U.S. military long ago ceded dominance in electronics innovation to Silicon Valley, the DoD-backed powerhouse that has driven microelectronic generation for decades. With Moore's Law clearly running out of steam, the Read more…

By George Leopold

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in 2017 with scale-up production for enterprise datacenters and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Servers Deliver High Performance Remote Visualization

Whether generating seismic simulations, locating new productive oil reservoirs, or constructing complex models of the earth’s subsurface, energy, oil, and gas (EO&G) is a highly data-driven industry. Read more…

Trinity Supercomputer’s Haswell and KNL Partitions Are Merged

July 19, 2017

Trinity supercomputer’s two partitions – one based on Intel Xeon Haswell processors and the other on Xeon Phi Knights Landing – have been fully integrated are now available for use on classified work in the Nationa Read more…

By HPCwire Staff

NSF Project Sets Up First Machine Learning Cyberinfrastructure – CHASE-CI

July 25, 2017

Earlier this month, the National Science Foundation issued a $1 million grant to Larry Smarr, director of Calit2, and a group of his colleagues to create a comm Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Fujitsu Continues HPC, AI Push

July 19, 2017

Summer is well under way, but the so-called summertime slowdown, linked with hot temperatures and longer vacations, does not seem to have impacted Fujitsu's out Read more…

By Tiffany Trader

Researchers Use DNA to Store and Retrieve Digital Movie

July 18, 2017

From abacus to pencil and paper to semiconductor chips, the technology of computing has always been an ever-changing target. The human brain is probably the com Read more…

By John Russell

The Exascale FY18 Budget – The Next Step

July 17, 2017

On July 12, 2017, the U.S. federal budget for its Exascale Computing Initiative (ECI) took its next step forward. On that day, the full Appropriations Committee Read more…

By Alex R. Larzelere

Women in HPC Luncheon Shines Light on Female-Friendly Hiring Practices

July 13, 2017

The second annual Women in HPC luncheon was held on June 20, 2017, during the International Supercomputing Conference in Frankfurt, Germany. The luncheon provid Read more…

By Tiffany Trader

Satellite Advances, NSF Computation Power Rapid Mapping of Earth’s Surface

July 13, 2017

New satellite technologies have completely changed the game in mapping and geographical data gathering, reducing costs and placing a new emphasis on time series Read more…

By Ken Chiacchia and Tiffany Jolley

Intel Skylake: Xeon Goes from Chip to Platform

July 13, 2017

With yesterday’s New York unveiling of the new “Skylake” Xeon Scalable processors, Intel made multiple runs at multiple competitive threats and strategic Read more…

By Doug Black

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This