Parallel File System OrangeFS Starts to Build a Following

By Nicole Hemsoth

November 18, 2011

If you thought Lustre and GPFS were your only two choices for a high performance, scalable parallel file system, then you’ve probably never heard of OrangeFS. Described as a branch of the open source Parallel Virtual File System (PVFS), OrangeFS has been taken under the wing of Omnibond LLC, which is now providing commercial support for the software.

At SC11, there was a BoF session that discussed recent developments in OrangeFS and its future direction. We caught up with two of the session leaders, Walt Ligon, founding PVFS/OrangeFS Architect and Associate Professor of Electrical and Computer Engineering, and Boyd Wilson executive director at Omnibond, as well as Jim Bottum, CIO and vice provost for Computing & Information Technology at Clemson University, to talk about the file system’s unique attributes and some of its real-world use cases.

HPCwire: What is OrangeFS and what problem is it trying to solve that is not being addressed by other parallel file systems like Lustre and GPFS?

Walt Ligon: OrangeFS is a next-generation parallel file system based on PVFS for compute and storage clusters of the future. Its original charter — to complement high-performance computing for cutting-edge research in academic and government initiatives — is fast expanding into a versatile array of real-world applications.

The big benefit of OrangeFS over many similar parallel file systems comes down to two issues. First, it is one of the best performing parallel file systems available. It is based on the PVFS architecture, which is powerful and modular. This has allowed the design to evolve to incorporate distributed directories, optimized requests, a wide variety of interfaces and features. It is well designed.

Second, it is an extremely easy file system to build, install, get and keep running. This is hard to quantify, so we encourage anyone to download the tarball and try it. As another point of reference, PVFS has been used in dozens of educational, experimental, and research settings and formed the basis of many graduate theses. It is a very usable file system.

PVFS went through two generations as an experimental-turned-production file system. OrangeFS has been hardened through several years of development, testing, and support by a professional development team. Now it is being deployed for a range of applications with commercial support, though it is still open source.

A detailed list of features that are unique to OrangeFS is:

  • Unique object-based file data transfer, allowing clients to work on objects without the need to handle underlying storage details, such as data blocks
  • Unified data/metadata servers
  • Distribution of metadata across storage servers
  • Distribution of directory entries
  • Diverse Client Access Methods: Posix, MPI, Linux VFS, FUSE, Windows, WebDAV, S3, and REST interfaces.
  • Ability to configure storage parameters by directory or file, including stripe size, number of servers, replication, security
  • Virtualized storage over any Linux file system as underlying local storage on each connected server

HPCwire: What is the precise relationship between PVFS and OrangeFS?

Ligon: OrangeFS is the next evolution of PVFS, adding commercial grade services in addition to new features and future development. For many years PVFS development focused primarily on a few large scientific workloads. At the same time members of the community used PVFS as a research tool to experiment with different aspects of parallel file system design and implementation. OrangeFS is broadening that scope to include production quality service for a wider range of data intensive application areas. This has led to re-evaluating a number of assumptions that were valid for PVFS but may, or may not, be appropriate for these other workloads. Thus a new generation of development is under way to address these new scenarios.

Boyd Wilson: PVFS was supported by a small group of exceptional developers that were closely associated with the scientific applications that it was intended for. OrangeFS, in contrast is looking to attract a wide range of users, thus Omnibond has stepped up to provide commercial grade support and development practices. Just the same, OrangeFS is still 100% open-source, there are no commercial versions of the code, we intend to support the PVFS community as we always have. We continue to support the PVFS mailing lists and interact with people using OrangeFS as a development platform. The benefit to those customers who do pay for support is priority access to a professional support staff with experience and resources for supporting the software as well as access to the developers in order to guide improvements and new features. Omnibond sees this latter point as a major opportunity to partner with its customers in developing vertical product lines using OrangeFS as a base. No other parallel file system is offered with this philosophy.

HPCwire: How does OrangeFS differ from other parallel file systems? What do you see as its main advantages?

Wilson: OrangeFS was designed with a unified server that supports both distributed metadata and distributed file data. The PVFS architecture is modular, making it easy to develop and support new networks and new storage devices, to implement new requests to optimize specific operations, and to add new features. OrangeFS is 100 percent open source, it was developed by a diverse community of government, academic, and industry. There are no commercial or “pro” versions, every new development is returned to the community. The community is still encouraged to participate in the development.

Configurable features at the system, directory and file levels including striping parameters, distribution methods, replication support, security, etc. The PVFS protocol provides a rich set of operations that support distributed operations and is easily extendable. OrangeFS provides diverse client access methods including MPI-IO, Posix-like methods, Linux VFS, FUSE and Windows support, coming soon will be WebDAV, S3, REST.

OrangeFS supports standard out-of-the-box Linux kernels. Server and client code are implemented at the user level. The Linux kernel module used for VFS support is very simple and does not require kernel patches. OrangeFS is very easy to build, install, and begin operating, and very easy to keep operating.

HPCwire: What types of users would be most interested in the technology? Are there use cases out there in the wild?

Jim Bottum: HPC users on all size parallel systems can make use of OrangeFS. PVFS was initially rolled out to the very high-end computing community and generally very large I/O. Clemson University adopted PVFS, which was initially developed by Clemson faculty and students, as it was beginning to roll out HPC campus wide in 2007.

As the Clemson staff tuned PVFS for its user community both on campus and around the state, it was tuned work equally as well on smaller I/O workloads. Users with rendering and video server farms, would be ideal, as would financial and other data analytics firms. We have been working with users in the oil and gas industry and a broad range of science and engineering.

We have a large corporate client that uses OrangeFS extensively for data mining. They have over 700 distinct OrangeFS file systems they are operating. Here at Clemson we have a diverse range of users including bioinformatics, digital production, astrophysics, several humanities areas and cloud computing.

Other Universities and Research labs are migrating to OrangeFS from PVFS2 and have commented on how it has solved several of their problems in the past. The PVFS2 users list and community has over 260 members and file system research around the globe is accomplished with PVFS2, now OrangeFS as its base.

HPCwire: What types of support and services does Omnibond are offer for OrangeFS and what’s the pricing model?

Wilson: Commercial grade services provide what customers would expect from commercial software but better. When you pay for a typical software license you get access to the software, and support may be extra. With OrangeFS and Omnibond you have the software; when you buy a subscription you get access to support but it also pays for future development. With your subscription you have a say in what features you would like worked on in the future.

For commercial customers a 5-storage-server bundle starts at $25,000 and as quantities increase the price per storage server decreases. We also offer custom pricing for cloud customers who need more scalable options

HPCwire: What does the roadmap for OrangeFS look like for the next couple of years?

Wilson: We have just released several new client interfaces and a new distributed directories implementation. Distributed directories allows directory entries for a single directory to be spread across multiple servers so that multiple client processes can be accessing a very large directory in parallel.

For the last few years we have been developing a new access control implementation based on signed capabilities that will improve the security of OrangeFS significantly with capability based security, which will be the basis of future federated file system access. We hope to be releasing this sometime in the coming months. We have a new Posix-like user interface, and it will include a user-level configurable data cache in the works that should be released soon as well.

Much of our development right now is focused on redundancy, particularly redundant metadata. Today users rely on RAID systems at each server to manage disk failure. In future systems we plan to allow the servers to automatically replicate data and metadata across multiple servers. As part of this we are moving to a more flexible architecture for managing servers in a distributed environment, including not only replication but tiered migration and a much more dynamic object model.

Similar efforts are under way within many research groups; OrangeFS will hopefully contribute to and benefit from these efforts. Finally, on the long-range radar, there is a project under way including LSU, Indiana, and Clemson, to develop a new object-oriented IO model called PXFS, using OrangeFS as a platform and targeting Exascale systems.

HPCwire: If someone wanted to give OrangeFS a try, how would they go about it?

Ligon: They can download a tarball from the website or download our latest changes from our CVS repository. Instructions on how to install the system are found in the documentation tab of our site.

OrangeFS builds using autoconf, make, and gcc from GNU. Most of the code will build and run on any UNIX-based system, except the VFS module, which is Linux-specific. An experimental FUSE module is included. The main dependencies are BerkeleyDB and the proper kernel headers (if the VFS module is to be built). Some operating systems use an old version of BerkeleyDB. In that case, make sure you install and build a newer OrangeFS version — version 4.8.30 or higher.

OrangeFS can be built for a regular user in virtually any location and tested on one or more machines. Access to the “root” account is required to install and start the VFS module. The file system can be operated without the VFS module, but most users will want to install it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This