Parallel File System OrangeFS Starts to Build a Following

By Nicole Hemsoth

November 18, 2011

If you thought Lustre and GPFS were your only two choices for a high performance, scalable parallel file system, then you’ve probably never heard of OrangeFS. Described as a branch of the open source Parallel Virtual File System (PVFS), OrangeFS has been taken under the wing of Omnibond LLC, which is now providing commercial support for the software.

At SC11, there was a BoF session that discussed recent developments in OrangeFS and its future direction. We caught up with two of the session leaders, Walt Ligon, founding PVFS/OrangeFS Architect and Associate Professor of Electrical and Computer Engineering, and Boyd Wilson executive director at Omnibond, as well as Jim Bottum, CIO and vice provost for Computing & Information Technology at Clemson University, to talk about the file system’s unique attributes and some of its real-world use cases.

HPCwire: What is OrangeFS and what problem is it trying to solve that is not being addressed by other parallel file systems like Lustre and GPFS?

Walt Ligon: OrangeFS is a next-generation parallel file system based on PVFS for compute and storage clusters of the future. Its original charter — to complement high-performance computing for cutting-edge research in academic and government initiatives — is fast expanding into a versatile array of real-world applications.

The big benefit of OrangeFS over many similar parallel file systems comes down to two issues. First, it is one of the best performing parallel file systems available. It is based on the PVFS architecture, which is powerful and modular. This has allowed the design to evolve to incorporate distributed directories, optimized requests, a wide variety of interfaces and features. It is well designed.

Second, it is an extremely easy file system to build, install, get and keep running. This is hard to quantify, so we encourage anyone to download the tarball and try it. As another point of reference, PVFS has been used in dozens of educational, experimental, and research settings and formed the basis of many graduate theses. It is a very usable file system.

PVFS went through two generations as an experimental-turned-production file system. OrangeFS has been hardened through several years of development, testing, and support by a professional development team. Now it is being deployed for a range of applications with commercial support, though it is still open source.

A detailed list of features that are unique to OrangeFS is:

  • Unique object-based file data transfer, allowing clients to work on objects without the need to handle underlying storage details, such as data blocks
  • Unified data/metadata servers
  • Distribution of metadata across storage servers
  • Distribution of directory entries
  • Diverse Client Access Methods: Posix, MPI, Linux VFS, FUSE, Windows, WebDAV, S3, and REST interfaces.
  • Ability to configure storage parameters by directory or file, including stripe size, number of servers, replication, security
  • Virtualized storage over any Linux file system as underlying local storage on each connected server

HPCwire: What is the precise relationship between PVFS and OrangeFS?

Ligon: OrangeFS is the next evolution of PVFS, adding commercial grade services in addition to new features and future development. For many years PVFS development focused primarily on a few large scientific workloads. At the same time members of the community used PVFS as a research tool to experiment with different aspects of parallel file system design and implementation. OrangeFS is broadening that scope to include production quality service for a wider range of data intensive application areas. This has led to re-evaluating a number of assumptions that were valid for PVFS but may, or may not, be appropriate for these other workloads. Thus a new generation of development is under way to address these new scenarios.

Boyd Wilson: PVFS was supported by a small group of exceptional developers that were closely associated with the scientific applications that it was intended for. OrangeFS, in contrast is looking to attract a wide range of users, thus Omnibond has stepped up to provide commercial grade support and development practices. Just the same, OrangeFS is still 100% open-source, there are no commercial versions of the code, we intend to support the PVFS community as we always have. We continue to support the PVFS mailing lists and interact with people using OrangeFS as a development platform. The benefit to those customers who do pay for support is priority access to a professional support staff with experience and resources for supporting the software as well as access to the developers in order to guide improvements and new features. Omnibond sees this latter point as a major opportunity to partner with its customers in developing vertical product lines using OrangeFS as a base. No other parallel file system is offered with this philosophy.

HPCwire: How does OrangeFS differ from other parallel file systems? What do you see as its main advantages?

Wilson: OrangeFS was designed with a unified server that supports both distributed metadata and distributed file data. The PVFS architecture is modular, making it easy to develop and support new networks and new storage devices, to implement new requests to optimize specific operations, and to add new features. OrangeFS is 100 percent open source, it was developed by a diverse community of government, academic, and industry. There are no commercial or “pro” versions, every new development is returned to the community. The community is still encouraged to participate in the development.

Configurable features at the system, directory and file levels including striping parameters, distribution methods, replication support, security, etc. The PVFS protocol provides a rich set of operations that support distributed operations and is easily extendable. OrangeFS provides diverse client access methods including MPI-IO, Posix-like methods, Linux VFS, FUSE and Windows support, coming soon will be WebDAV, S3, REST.

OrangeFS supports standard out-of-the-box Linux kernels. Server and client code are implemented at the user level. The Linux kernel module used for VFS support is very simple and does not require kernel patches. OrangeFS is very easy to build, install, and begin operating, and very easy to keep operating.

HPCwire: What types of users would be most interested in the technology? Are there use cases out there in the wild?

Jim Bottum: HPC users on all size parallel systems can make use of OrangeFS. PVFS was initially rolled out to the very high-end computing community and generally very large I/O. Clemson University adopted PVFS, which was initially developed by Clemson faculty and students, as it was beginning to roll out HPC campus wide in 2007.

As the Clemson staff tuned PVFS for its user community both on campus and around the state, it was tuned work equally as well on smaller I/O workloads. Users with rendering and video server farms, would be ideal, as would financial and other data analytics firms. We have been working with users in the oil and gas industry and a broad range of science and engineering.

We have a large corporate client that uses OrangeFS extensively for data mining. They have over 700 distinct OrangeFS file systems they are operating. Here at Clemson we have a diverse range of users including bioinformatics, digital production, astrophysics, several humanities areas and cloud computing.

Other Universities and Research labs are migrating to OrangeFS from PVFS2 and have commented on how it has solved several of their problems in the past. The PVFS2 users list and community has over 260 members and file system research around the globe is accomplished with PVFS2, now OrangeFS as its base.

HPCwire: What types of support and services does Omnibond are offer for OrangeFS and what’s the pricing model?

Wilson: Commercial grade services provide what customers would expect from commercial software but better. When you pay for a typical software license you get access to the software, and support may be extra. With OrangeFS and Omnibond you have the software; when you buy a subscription you get access to support but it also pays for future development. With your subscription you have a say in what features you would like worked on in the future.

For commercial customers a 5-storage-server bundle starts at $25,000 and as quantities increase the price per storage server decreases. We also offer custom pricing for cloud customers who need more scalable options

HPCwire: What does the roadmap for OrangeFS look like for the next couple of years?

Wilson: We have just released several new client interfaces and a new distributed directories implementation. Distributed directories allows directory entries for a single directory to be spread across multiple servers so that multiple client processes can be accessing a very large directory in parallel.

For the last few years we have been developing a new access control implementation based on signed capabilities that will improve the security of OrangeFS significantly with capability based security, which will be the basis of future federated file system access. We hope to be releasing this sometime in the coming months. We have a new Posix-like user interface, and it will include a user-level configurable data cache in the works that should be released soon as well.

Much of our development right now is focused on redundancy, particularly redundant metadata. Today users rely on RAID systems at each server to manage disk failure. In future systems we plan to allow the servers to automatically replicate data and metadata across multiple servers. As part of this we are moving to a more flexible architecture for managing servers in a distributed environment, including not only replication but tiered migration and a much more dynamic object model.

Similar efforts are under way within many research groups; OrangeFS will hopefully contribute to and benefit from these efforts. Finally, on the long-range radar, there is a project under way including LSU, Indiana, and Clemson, to develop a new object-oriented IO model called PXFS, using OrangeFS as a platform and targeting Exascale systems.

HPCwire: If someone wanted to give OrangeFS a try, how would they go about it?

Ligon: They can download a tarball from the website or download our latest changes from our CVS repository. Instructions on how to install the system are found in the documentation tab of our site.

OrangeFS builds using autoconf, make, and gcc from GNU. Most of the code will build and run on any UNIX-based system, except the VFS module, which is Linux-specific. An experimental FUSE module is included. The main dependencies are BerkeleyDB and the proper kernel headers (if the VFS module is to be built). Some operating systems use an old version of BerkeleyDB. In that case, make sure you install and build a newer OrangeFS version — version 4.8.30 or higher.

OrangeFS can be built for a regular user in virtually any location and tested on one or more machines. Access to the “root” account is required to install and start the VFS module. The file system can be operated without the VFS module, but most users will want to install it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

CMU’s Latest “Card Shark” – Libratus – is Beating the Poker Pros (Again)

January 20, 2017

It’s starting to look like Carnegie Mellon University has a gambling problem – can’t stay away from the poker table. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Jan. 19, 2017)

January 19, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

France’s CEA and Japan’s RIKEN to Partner on ARM and Exascale

January 19, 2017

France’s CEA and Japan’s RIKEN institute announced a multi-faceted five-year collaboration to advance HPC generally and prepare for exascale computing. Among the particulars are efforts to: build out the ARM ecosystem; work on code development and code sharing on the existing and future platforms; share expertise in specific application areas (material and seismic sciences for example); improve techniques for using numerical simulation with big data; and expand HPC workforce training. It seems to be a very full agenda. Read more…

By Nishi Katsuya and John Russell

ARM Waving: Attention, Deployments, and Development

January 18, 2017

It’s been a heady two weeks for the ARM HPC advocacy camp. At this week’s Mont-Blanc Project meeting held at the Barcelona Supercomputer Center, Cray announced plans to build an ARM-based supercomputer in the U.K. while Mont-Blanc selected Cavium’s ThunderX2 ARM chip for its third phase of development. Last week, France’s CEA and Japan’s Riken announced a deep collaboration aimed largely at fostering the ARM ecosystem. This activity follows a busy 2016 when SoftBank acquired ARM, OpenHPC announced ARM support, ARM released its SVE spec, Fujistu chose ARM for the post K machine, and ARM acquired HPC tool provider Allinea in December. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This