NVIDIA Tegra Processors Blaze the Way for ARM in Supercomputing

By Michael Feldman

November 23, 2011

As has become apparent to nearly everyone in the HPC community, life beyond petascale supercomputing will be power limited. Many efforts around the world are now underway to address this problem, both by commercial interests and researchers. One such effort that brings both into play is the Mont-Blanc research project at the Barcelona Supercomputing Center (BSC), which is looking to exploit ARM processors, GPUs, and other off-the-shelf technologies to produce radically energy-efficient supercomputers.

In this case, radically means using 15 to 30 times less energy than would be the case with current HPC technologies. The idea is to be able to build petascale, and eventually exascale supercomputers that would draw no more than twice the power of the top supercomputers today. (The world champ 10-petaflop K computer chews up 12MW running Linpack.) Specifically, the goal is develop an architecture that can scale to 50 petaflops on just 7MW of power in the 2014 timeframe, and 200 petaflops with 10MW by 2017.

The Mont-Blanc project was officially kicked off on October 14, and thanks to 14 million Euros in funding, is already in full swing. Last week, NVIDIA announced that BSC had built and deployed a prototype machine using the GPU maker’s ARM-based Tegra processors that have, up until now, been used only in mobile devices.

The power-sipping ARM is increasingly turning up in conversations around energy efficient HPC. At SC11 in Seattle last week, there were a couple of sessions along these lines, including a BoF on Energy Efficient High Performance Computing that featured the advantages of the ARM architecture for this line of work as well as a PGI exhibitor forum on some of the practical aspects of using ARM processors for high performance computing. There was also the recent news by ARM Ltd of its new 64-bit ARM design (ARMv8), which is intended to move the architecture into the server arena.

NVIDIA is already sold on ARM, and not just for the Tegra line. In January, the company revealed “Project Denver,” its plan to design processors that integrate NVIDIA-designed ARM CPUs and CUDA GPUs, with the idea of introducing them across their entire portfolio, including the high-end Tesla line. “We think that the momentum is clearly pointing in the direction of more and more ARM infiltration into the HPC space,” said Steve Scott, CTO of NVIDIA’s Tesla Unit.

The Mont-Blanc project is certainly an endorsement of this approach. The initial BSC prototype system is a 256-node cluster, with each node pairing a dual-core Tegra 2 with two independent ARM Cortex-A9 processors. The whole machine delivers a meager 512 gigaflops (peak) and an efficiency of about 300 megaflops/watt, which is on par with a current-generation x86-based cluster. The numbers here are somewhat meaningless though. The initial system is a proof of concept platform designed for researchers to begin development of the software stack and port some initial applications.

The second BSC prototype, scheduled to be built in the first half of 2012, will employ NVIDIA’s next-generation quad-core Tegra 3 chips hooked up to discrete NVIDIA GPUs, in this case, the GeForce 520MX (a GPU for laptops). This system is also 256 nodes, but will deliver on the order of 38 peak teraflops. Energy efficiency is estimated to be a much more impressive 7.5 gigaflops/watt, or more than three and a half times better than the industry-leading Blue Gene/Q supercomputer. In conjunction with this second prototype, NVIDIA will be releasing a new CUDA toolkit that will include ARM support.

The first two prototypes are BSC inventions. The project will subsequently develop its own more advanced prototype. According to Scott, that cluster will be 1,000 nodes, although the internal make-up is still not decided. Given the timeframe though (2013-2014), the system is likely to include NVIDIA processors using Project Denver technology, with the chip maker’s homegrown ARM implementation and much more performant GPUs.

By the end of the three-year project, the researchers intend to have a complete software stack, including an operating system, runtime libraries, scientific libraries, cluster management middleware, one or more file systems, and performance tools. They also hope to have 11 full-scale scientific applications running on the architecture, which encompass fluid dynamics, protein folding, weather modeling, quantum chromodynamics, and seismic simulations, among others.

Whether Mont-Blanc leads to any commercial HPC products remains to be seen. NVIDIA, for its part, is certainly happy to see this level interest and adoption of its ARM-GPU approach. “We see this as seeding the environment, where people can do software development and experimentation,” said Scott. “We think that it will grow into something larger down the road.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This