HPC Experts Provide Glue Between Supercomputers and Climate Science

By Michael Feldman

November 30, 2011

Some of the most important supercomputing models aimed at climate change research have been developed by National Oceanic and Atmospheric Administration (NOAA), and in particular, its Geophysical Fluid Dynamics Laboratory (GFDL) at Princeton University. The GFDL researchers are experts in climate science, but as with many scientists, they are often less adept with the vagaries of supercomputing technology. That’s where HPTi comes in.

HPTi (High Performance Technologies Inc.) was bought by DRC Company in July, but maintains its autonomy and mission as a federal contractor for high-end technology support. The company’s strength lies in its HPC expertise and its ability to apply computational and science research to their clients’ applications. For NOAA, HPTi provides high performance computing know-how, consulting and training. As part that contract, HPTi supports the GFDL climate work, helping researchers there upgrade their climate models as well as providing guidance for future supercomputing hardware and software tools.

A major reason the GFDL work is so important is that their results are incorporated into climate assessments composed by the Intergovernmental Panel on Climate Change (IPCC). Although IPCC does use results from climate research derived at other labs, the GFDL models are central to their assessments. And the reports themselves have become the de facto standard for climate policymakers, scientists, the press, and the public.

The niche HPTi has carved out with GFDL has allowed researchers at the lab to concentrate on the physics of the models, leaving the nitty-gritty of HPC to the HPTi staff of computational scientists, software developers, systems support people, and other consultants. Because the company provides a lot of the computation glue for the researchers, HPTi tends to maintain long-term relationships (and contracts) with agencies like NOAA. In this case, the company has been supporting the GFDL climate research effort since 2008.

The continuity of involvement is important. The HPC hardware for the climate work gets upgraded every few years, requiring a reassessment of the software as well as the software development tools. According to William Cooke, a senior associate who works with climate modeling team at GFDL, over the last four years, the HPC systems used to run the models have changed dramatically.

Cooke says as recently as a few years ago, GFDL was employing an 8,000-core SGI Altix supercomputer, with a shared-memory architecture. A couple of years ago, they move to a Cray XT6 machine, with 30,000-plus cores. In the next few months, they’re going to upgrade that system to an XE6, adding 78,000 more cores in the process. When installed, that system will represent a peak petaflop of computational horsepower.

Ideally the scientists would like to just recompile their application software and run it on the new machine, but in practice, that’s not what happens. The hardware upgrades, especially the greatly increased core counts, necessitate that the climate models be modified if they are to take advantage of the additional computational power.

The additional power also allows the researchers to consider adding extra features, such as atmospheric chemistry, CO2 feedback, phytoplankton blooms, more detailed landforms and so on. But more directly, the extra cores can be used to increase the fidelity of the existing models.

For example, the current climate models use a two-degree square resolution for the atmosphere and land and a one-degree resolution for the ocean and ice. To get more fine-grained results, the scientists would like to get the atmosphere/land model down to half a degree or better and the ocean/ice model to at least a quarter of a degree. The resulting simulation will be better at picking up smaller scale effects like hurricane activity and the intensity of regional rainfall or drought.

To make it all work though, the models need to be stitched together, which takes a special piece of software called the coupler. According to Cooke, that’s another critical components that HPTi has been spending a lot of time with. And in this area, he says, the increased core count that came with the Cray supercomputer forced a rewrite of the underlying algorithms. The new version not only enabled the coupled model to run on over 10,000 cores, but it also cut the simulation time in half.

That’s significant, given the amount of computer time devoted to these climate models. Running a 20- to 30-year simulation takes about a week on the current system, but forecasting hundreds of model-years can tie up the same machine for up to six months. The scaled up software translates into more runs for the researchers, allowing them to refine their results and create more “what if” scenarios.

At the backend of the simulation, the computation turns into a typical big data problem. According to Cooke, even at two degrees resolution, the models generate about half a petabyte per month, and this has been going on for the last couple of years. With finer resolution, these datasets will get even larger.

Currently the raw data is sent over NOAA’s research network (N-Wave) every day to be post-processed at GFDL. But as the models generate more and more data, it tends to become stuck in place, which is why data lifecycle management is becoming a critical component of the research. This is yet another area that HPTi is providing guidance for.

The IPCC’s Fifth Assessment Report, which will include the latest simulation work from GFDL, is now underway and is scheduled for completion in 2013-2014.  The report, the research, and the data upon which it rests will be available in the public domain.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Symposium on Computer Architecture (ISCA) in Los Angeles. The Read more…

By Staff

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This