Genomics Drowning in Data

By Michael Feldman

December 1, 2011

The leap forward in genomics technology promises to change health care as we know it. Sequencing a human genome, which costs millions of dollars just a few years ago, now costs thousands. And the prospect of mapping a genome for under a thousand dollars is on the horizon.

But cheap gene sequencing, by itself, won’t usher in a health care revolution. An article in the New York Times  this week points out that turning those sequenced genomes into something useful is the true bottleneck. Doctors would like to be able to use their patients genome to determine their susceptibility to specific diseases or to devise personalized treatments for conditions they already have.

Sequencing all the DNA base pairs is really the easy part of the problem. It just reflects the ordering of these bases — adenine (A) , thymine (T), guanine (G), cytosine (C) — in the chromosomes. The bioinformatics software necessary to extract useful information from this low-level biomolecular alphabet is much more complex and therefore costly, and necessitates a fair amount of computing power.

According to David Haussler, director of the center for biomolecular science and engineering at the University of California, Santa Cruz, that’s why it costs more to analyze a genome than to sequence it, and that discrepancy is expected to grow as the cost of sequencing falls.

The NYT article reports that the cost of sequencing a human genome has decreased by a factor of more than 800 since 2007, while computing costs have only decreased by a factor of four. That has resulted in an enormous accumulation of unanalyzed data that is being generated by all the cheap sequencing equipment.

According to the article, the current capacity of sequencers worldwide is able to 13 quadrillion DNA base pairs per year. For this year alone, it is estimated that 30,000 human genomes will be sequenced, a figure that is expected to rise to the millions within just a few years.

Not only is that too much data to analyze in aggregate, it’s also too difficult to share that volume of data between researchers. Even the fastest commercial networks are too slow to send multiple terabytes of information in anything less than a few weeks. That’s why BGI (Beijing Genomics Institute), the largest genomics research institute in the world, has resorted to sending computer disks of sequenced data via FedEx.

Cloud computing may help alleviate these problems. In fact, some believe that Google alone has enough compute and storage capacity to handle the global genomics workload. Others believe that there is just too much raw data and researchers will have to pre-process it to reduce the volume or just hold onto the unique bits.

But there are even more challenging problems ahead. Metagenomics, which aggregates DNA sequences of a whole population of organism, is even more data-intensive. For example, the microbial species in the human digestive tract represent about a million times as much sequenced data as the human genome. And since that microbial population can have a profound effect on the its human host, that genomic data becomes a pseudo-extension of the person’s genetic profile.

On top of that is all is the data associated with the RNA, proteins and other various biochemicals in the body. To get a complete picture of human health, all of this data has to be integrated as well.  Data deluge indeed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than ever, the network plays a crucial role. While fast, perform Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of personalized treatments based on an individual’s genetic makeup Read more…

By Warren Froelich

WCRP’s New Strategic Plan for Climate Research Highlights the Importance of HPC

July 19, 2018

As climate modeling increasingly leverages exascale computing and researchers warn of an impending computing gap in climate research, the World Climate Research Programme (WCRP) is developing its new Strategic Plan – and high-performance computing is slated to play a critical role. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Are Your Software Licenses Impeding Your Productivity?

In my previous article, Improving chip yield rates with cognitive manufacturing, I highlighted the costs associated with semiconductor manufacturing, and how cognitive methods can yield benefits in both design and manufacture.  Read more…

U.S. Exascale Computing Project Releases Software Technology Progress Report

July 19, 2018

As is often noted the race to exascale computing isn’t just about hardware. This week the U.S. Exascale Computing Project (ECP) released its latest Software Technology (ST) Capability Assessment Report detailing progress so far. Read more…

By John Russell

InfiniBand Still Tops in Supercomputing

July 19, 2018

In the competitive global HPC landscape, system and processor vendors, nations and end user sites certainly get a lot of attention--deservedly so--but more than Read more…

By Tiffany Trader

HPC for Life: Genomics, Brain Research, and Beyond

July 19, 2018

During the past few decades, the life sciences have witnessed one landmark discovery after another with the aid of HPC, paving the way toward a new era of perso Read more…

By Warren Froelich

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

AI Thought Leaders on Capitol Hill

July 14, 2018

On Thursday, July 12, the House Committee on Science, Space, and Technology heard from four academic and industry leaders – representatives from Berkeley Lab, Argonne Lab, GE Global Research and Carnegie Mellon University – on the opportunities springing from the intersection of machine learning and advanced-scale computing. Read more…

By Tiffany Trader

HPC Serves as a ‘Rosetta Stone’ for the Information Age

July 12, 2018

In an age defined and transformed by its data, several large-scale scientific instruments around the globe might be viewed as a ‘mother lode’ of precious data. With names seemingly created for a ‘techno-speak’ glossary, these interferometers, cyclotrons, sequencers, solenoids, satellite altimeters, and cryo-electron microscopes are churning out data in previously unthinkable and seemingly incomprehensible quantities -- billions, trillions and quadrillions of bits and bytes of electro-magnetic code. Read more…

By Warren Froelich

Tsinghua Powers Through ISC18 Field

July 10, 2018

Tsinghua University topped all other competitors at the ISC18 Student Cluster Competition with an overall score of 88.43 out of 100. This gives Tsinghua their s Read more…

By Dan Olds

HPE, EPFL Launch Blue Brain 5 Supercomputer

July 10, 2018

HPE and the Ecole Polytechnique Federale de Lausannne (EPFL) Blue Brain Project yesterday introduced Blue Brain 5, a new supercomputer built by HPE, which displ Read more…

By John Russell

Pumping New Life into HPC Clusters, the Case for Liquid Cooling

July 10, 2018

High Performance Computing (HPC) faces some daunting challenges in the coming years as traditional, industry-standard systems push the boundaries of data center Read more…

By Scott Tease

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This