Cloud Computing: It’s Not Just for Rocket Scientists

By Jose Luis Vazquez-Poletti

December 5, 2011

The ability to run HPC workloads inside a public or private cloud provides valuable insights related to both the industrial and academic worlds. If you focus on the latter and on universities in particular, you will see that we professors do not spend our entire day on research exclusively, as teaching is among our duties. This article explains how cloud computing can also be accessed by students in order to complement their education by developing Master Thesis projects related to this technology. What follows is a showcasing of the splendid work done by my students recently.

Every academic year, computer science students file in to their professors’ offices to inquire about proposed Master Thesis projects. When students come to me, I respond with another question: “What would you like to work on that may benefit from cloud computing?”

If motivating Master Thesis students by having their work be an extension of their natural interests is a must, involving them in a bleeding-edge technology like cloud computing is the icing on the cake.

As I allude to in the title of this article, one of the features of this technology is its high accessibility. In this way, it opens up a world of research possibilities and engenders a fast learning process, allowing the students to develop in a reasonable time projects like the ones that are outlined below:

[email protected]: Efficient Cryptanalysis on the Cloud (2010-2011)

When I asked these three students about a research field that would benefit from cloud-based cycles, they answered “cryptanalysis” as they understood that public cloud providers would provide the best infrastructure for an efficient security auditing of RSA keys (used in many fields, such as e-commerce) in terms of performance and cost.

[email protected]: Alberto Megia, Antonio Molinera and Jose Antonio Rueda at one of the UCM classrooms.

They developed a system that took advantage of parallel programming and cloud computing in order to factorize very big integers, the real basis of RSA cryptosystem’s security, by executing different mathematic algorithms like trial division and quadratic sieve. The combination of Amazon EC2 and private cloud machines were chosen to achieve this goal, since both make possible to reach the efficient results mentioned above.

The [email protected] system relies in three main modules:

  • The Forecaster, a simulation software whose purpose is to estimate the required processing time and cost on Amazon EC2 allowing to find a compromise between these two parameters.

  • The Engine, the RSA keys factorization and parallelization module. New factorization algorithms can be easily added as they only need a wrapper script for their integration in the system.

  • The Keyswarm, a graphic representation of the interactions between cloud machines during the process. It uses Code Swarm (http://code.google.com/p/codeswarm/) by translating [email protected] events to CVS/SVN ones.


[email protected]: Forecaster module.

An interesting outcome of this Master Thesis project was the preparation and presentation of a research paper at a Spanish conference by my students. This experience allowed them to get in touch with the national scientific landscape but also with the nice natural landscape of Tenerife (Canary Islands), where the conference took place. All in all, this trip was a fitting reward for a job well-done.


[email protected]: Keyswarm module showing factorization of a 49 digit RSA key using 12 machines. Each parallel task is represented by a dot.

CONSTRUCTOR: Cloud PaaS for Startups (2011-2012, ongoing)

These students planned to orient their professional career to the industry once they leave the university. With this in mind, they researched how a software startup could begin its activity and continue to prosper.


CONSTRUCTOR: Isabel Espinar, Adrian Escoms and Esther Rodrigo with a “tuned” set of servers from the UCM Computer Science Museum.

They understood that a startup with a low budget could rely solely on on-demand resources provided by a public cloud infrastructure. A development phase of a given product has specific software requirements that can be restrictive, so the developers need a tool to easily deploy and (re)configure the necessary machines. Also, developers need a standard entry point to the development platform, allowing them to change the context as fast as possible. On the other hand, the startup needs to calculate the exact development cost in order to assign a competitive price to the final product.

With these previous factors taken into account, my students’ framework, named CONSTRUCTOR as a reference to “The Matrix” saga, will provide a graphical user interface with the following features:

  • Virtual machine management using Amazon EC2 API.

  • Software deployment using Chef (http://www.opscode.com/chef/).

  • Instant generation of a Eclipse (http://www.eclipse.org/) configuration file corresponding to the virtual machine and software that the developer wants to work with.

  • Differentiated accounting (virtual machine usage) for each development phase and software product.


CONSTRUCTOR’s key features.

POPULOUS: Biodiversity on the Cloud (2011-2012, ongoing)

Only one member comprises the team behind this project, as he was my student at the UCM Master in Bioinformatics and Computational Biology (http://bbm1.ucm.es/masterbioinfo/) and not at the Faculty’s Computer Science studies. He is currently preparing his Master Thesis at a department in the Spanish Natural Sciences National Museum (http://www.mncn.csic.es/).


POPULOUS: Gonzalo Santana and one of the National Natural Sciences Museum exhibits, a Snow Leopard.

His project, named POPULOUS as a reference to the 1989 video game, aims to understand the effects of climatic elements on the evolution, migration and extinction of species and biodiversity. This is accomplished with complex mathematical models that generate physiologic responses from the studied species according to climatic data. Survival odds for each species are then obtained for a given area.

The resulting system will verify if biodiversity in mountains is higher than in other zones or if the climatic change forces species to migrate to other zones where their survival odds are higher.

The initial computational resources available at my student’s department consisted in a NVIDIA GPU cluster with no dedicated usage. The final application will be very computing intensive and should not discard any available resources in order to increase global performance. For this reason, my student turned his attention to public cloud infrastructures that would complement the local resources.

Focusing on a lower level, the parallel application will be executed in both CPU and GPU resources provided by local and cloud infrastructures. For this reason, my student has chosen the OpenCL API (http://www.khronos.org/opencl/).

The next generation of “cloud shapers”

Cloud computing is a reality we are using on a daily basis, but now it’s time to start considering the next generation that will fill our ranks.

Master Thesis projects are a great opportunity assisted by the many applications of cloud computing and boosted by the student’s imagination. If cloud’s high accessibility and open source tools are added to the equation then we get the best methodology to help them implement their awesome ideas.

As I say to my students year after year: “It’s not only education but ideas that will help you survive outside this classroom.”

About the Author

Dr. Jose Luis Vazquez-PolettiDr. Jose Luis Vazquez-Poletti is Assistant Professor in Computer Architecture at Complutense University of Madrid (UCM, Spain), and a Cloud Computing Researcher at the Distributed Systems Architecture Research Group. He is (and has been) directly involved in EU-funded projects, such as EGEE (Grid Computing) and 4CaaSt (PaaS Cloud), as well as many Spanish national initiatives.

From 2005 to 2009, Professor Vazquez-Poletti’s research focused in application porting onto Grid Computing infrastructures, activity that let him be “where the real action was.” These applications pertained to a wide range of areas, from Fusion Physics to Bioinformatics. During this period he achieved the abilities needed for profiling applications and making them benefit of distributed computing infrastructures. Additionally, he shared these abilities in many training events organized within the EGEE Project and similar initiatives.

Since 2010 his research interests lie in different aspects of cloud computing, but always having real life applications in mind, specially those pertaining to the High Performance Computing domain.

Website: http://dsa-research.org/jlvazquez/

Linkedin: http://es.linkedin.com/in/jlvazquezpoletti/

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This