Selecting the Most Effective InfiniBand Topology for Technical Computing

By Nicole Hemsoth

December 5, 2011

SGI® ICE 8400

Selecting the Most Effective InfiniBand Topology

Across a wide range of disciplines, InfiniBand technology now enables clusters that range from a few systems to the largest technical computing clusters in the world. In only a few years, clustering with InfiniBand has come to easily dominate the top 100 of the Top500 list of supercomputing sites (www.top500.org). As new grand-challenge problems and other computational challenges emerge, larger and larger clusters will be required. Even with now routine advances in processor speed and memory capacity, scaling with cluster size will likely remain the simplest way to grow computational capacity for the world’s most tenacious computational problems. While InfiniBand can be deployed in multiple topologies, choosing the optimum InfiniBand topology can be difficult, with trade-offs in terms of scalability, performance, and cost. SGI has considerable experience in the design and deployment of some of the largest InfiniBand clusters in existence.

While some vendor’s limitations drive them to push one topology choice above others, SGI understands that the best topology is one that matches the needs of the application. Based on high-performance AMD Opteron™ 6200 Series processors, the SGI® ICE 8400 system is designed for flexible and optimized InfiniBand topology configuration.

InfiniBand Topology Considerations and Trade-offs

SGI ICE supports multiple InfiniBand topology choices, including All-to-All, Fat Tree (CLOS), as well as Hypercube and Enhanced Hypercube topologies. Choosing the right topology involves understanding the needs of the application as well as comparing key metrics and cost implications.

SGI ICE Topology Choices

InfiniBand fabrics present different advantages and limitations. The SGI ICE system is designed to flexibly support multiple InfiniBand topologies, including:

  • All-to-All. All-to-All topologies are ideal for applications that are highly sensitive to Message Passing Interface (MPI) latency since they provide minimal latency in terms of hop-count. Though All-to-All topologies can provide non-blocking fabrics, and high bisection bandwidth, they are restricted to relatively small cluster deployments due to limited switch port counts.
  • Fat Tree. Fat Tree or CLOS topologies are well suited for smaller node-count MPI jobs. Fat Tree topologies can provide non-blocking fabrics and consistent hop counts resulting in predictable latency for MPI jobs. At the same time, Fat Tree topologies do not scale linearly with cluster size. Cabling and switching become increasingly difficult and expensive as cluster size grows, with very large core switches required for larger clusters.
  • Standard Hypercube. Standard Hypercube topologies are ideal for large node-count MPI jobs, provide rich bandwidth capabilities, and scale easily from small to extremely large clusters. Hypercubes add orthogonal dimensions of interconnect as they grow, and are easily optimized for both local and global communication within the cluster. Standard Hypercube topology provides the lightest weight fabric at the lowest cost with a single cable typically used for each dimensional link.
  • SGI Enhanced Hypercube. Adding to the benefits of Standard Hypercube topologies, SGI Enhanced Hypercube topologies make use of additional available switch ports by adding redundant links at the lower dimensions of the hypercube to improve the overall bandwidth of the interconnect

SGI ICE 8400: Designed for InfiniBand

The SGI ICE platform is fundamentally architected to provide cost-effective high-performance InfiniBand infrastructure. The SGI ICE 8400 platform in particular is capable of achieving industry-leading scalability without sacrificing application performance efficiency. The platform offers a variety of interconnect options that let organizations scale their applications across hundreds or thousands of processor cores.

The SGI ICE 8400 system can accommodate up to 16 compute blades within each Individual Rack Unit (IRU). The

IRU is a 10 rack unit (10U) chassis that provides power, cooling, system control, and network fabric for up to 16 blades via a backplane. Up to four IRUs are supported in each custom-designed 42U rack, with a choice of either air cooling or water cooling for all configurations. Each rack supports:

  • A maximum of four IRUs
  • Up to 2048 of AMD Opteron ™ 6200 series
  • A maximum of 12.2TB of memory (64 x 192GB)

Conclusion

Effective InfiniBand topology requires system architecture designed with scalability in mind. The SGI ICE system

was purposely designed for InfiniBand networking, and together with the high core density of  AMD Opteron 6200 Series processors, the platform is capable of achieving industry-leading density and scalability for a broad range of technical computing applications. Being the world’s only 16-core x86 processor, the AMD Opteron 6200 Series processor delivers unprecedented scalability for large HPC deployments. With a choice of supported InfiniBand topologies, the SGI ICE system is ideal for deploying InfiniBand clusters ranging from a single 16-node IRU to hundreds of racks and many thousands of nodes.

Selecting an appropriate InfiniBand topology requires careful consideration of applications, algorithms, and data sets, along with likely needs for scalability into the future. In the absence of benchmark data, having some basic knowledge of the application characteristics may be enough to guide topology choices. Extensive testing done by SGI has shown that applications are generally less sensitive to topology than kernel benchmarks, but that differences in performance become more pronounced as clusters grow in size. When global interconnect bandwidth is important, Enhanced Hypercube dual-rail is the raw performance leader. For smaller single-rail topologies, Fat Tree is often the most economical choice. As clusters grow, hypercube topologies gain scalability, performance and cost advantages, avoiding the external switching and cabling that is required for Fat Tree and All-to-All topologies. Having deployed some of the world’s largest open systems InfiniBand networks and clusters, SGI has the experience and expertise to help organizations choose the right equipment and networking topology to meet their most challenging computational problems.

For more information go to: www.sgi.com/go/amd

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blue Ribbon and Harley Davidson motorcycles the agenda addresse Read more…

By Merle Giles

NSF Awards $10M to Extend Chameleon Cloud Testbed Project

September 19, 2017

The National Science Foundation has awarded a second phase, $10 million grant to the Chameleon cloud computing testbed project led by University of Chicago with partners at the Texas Advanced Computing Center (TACC), Ren Read more…

By John Russell

NERSC Simulations Shed Light on Fusion Reaction Turbulence

September 19, 2017

Understanding fusion reactions in detail – particularly plasma turbulence – is critical to the effort to bring fusion power to reality. Recent work including roughly 70 million hours of compute time at the National E Read more…

HPE Extreme Performance Solutions

HPE Prepares Customers for Success with the HPC Software Portfolio

High performance computing (HPC) software is key to harnessing the full power of HPC environments. Development and management tools enable IT departments to streamline installation and maintenance of their systems as well as create, optimize, and run their HPC applications. Read more…

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakthrough Science at the Exascale” at the ACM Europe Conferen Read more…

By Tiffany Trader

Takeaways from the Milwaukee HPC User Forum

September 19, 2017

Milwaukee’s elegant Pfister Hotel hosted approximately 100 attendees for the 66th HPC User Forum (September 5-7, 2017). In the original home city of Pabst Blu Read more…

By Merle Giles

Kathy Yelick Charts the Promise and Progress of Exascale Science

September 15, 2017

On Friday, Sept. 8, Kathy Yelick of Lawrence Berkeley National Laboratory and the University of California, Berkeley, delivered the keynote address on “Breakt Read more…

By Tiffany Trader

DARPA Pledges Another $300 Million for Post-Moore’s Readiness

September 14, 2017

The Defense Advanced Research Projects Agency (DARPA) launched a giant funding effort to ensure the United States can sustain the pace of electronic innovation vital to both a flourishing economy and a secure military. Under the banner of the Electronics Resurgence Initiative (ERI), some $500-$800 million will be invested in post-Moore’s Law technologies. Read more…

By Tiffany Trader

IBM Breaks Ground for Complex Quantum Chemistry

September 14, 2017

IBM has reported the use of a novel algorithm to simulate BeH2 (beryllium-hydride) on a quantum computer. This is the largest molecule so far simulated on a quantum computer. The technique, which used six qubits of a seven-qubit system, is an important step forward and may suggest an approach to simulating ever larger molecules. Read more…

By John Russell

Cubes, Culture, and a New Challenge: Trish Damkroger Talks about Life at Intel—and Why HPC Matters More Than Ever

September 13, 2017

Trish Damkroger wasn’t looking to change jobs when she attended SC15 in Austin, Texas. Capping a 15-year career within Department of Energy (DOE) laboratories, she was acting Associate Director for Computation at Lawrence Livermore National Laboratory (LLNL). Her mission was to equip the lab’s scientists and research partners with resources that would advance their cutting-edge work... Read more…

By Jan Rowell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

MIT-IBM Watson AI Lab Targets Algorithms, AI Physics

September 7, 2017

Investment continues to flow into artificial intelligence research, especially in key areas such as AI algorithms that promise to move the technology from speci Read more…

By George Leopold

Need Data Science CyberInfrastructure? Check with RENCI’s xDCI Concierge

September 6, 2017

For about a year the Renaissance Computing Institute (RENCI) has been assembling best practices and open source components around data-driven scientific researc Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

Leading Solution Providers

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

GlobalFoundries: 7nm Chips Coming in 2018, EUV in 2019

June 13, 2017

GlobalFoundries has formally announced that its 7nm technology is ready for customer engagement with product tape outs expected for the first half of 2018. The Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This