Selecting the Most Effective InfiniBand Topology for Technical Computing

By Nicole Hemsoth

December 5, 2011

SGI® ICE 8400

Selecting the Most Effective InfiniBand Topology

Across a wide range of disciplines, InfiniBand technology now enables clusters that range from a few systems to the largest technical computing clusters in the world. In only a few years, clustering with InfiniBand has come to easily dominate the top 100 of the Top500 list of supercomputing sites (www.top500.org). As new grand-challenge problems and other computational challenges emerge, larger and larger clusters will be required. Even with now routine advances in processor speed and memory capacity, scaling with cluster size will likely remain the simplest way to grow computational capacity for the world’s most tenacious computational problems. While InfiniBand can be deployed in multiple topologies, choosing the optimum InfiniBand topology can be difficult, with trade-offs in terms of scalability, performance, and cost. SGI has considerable experience in the design and deployment of some of the largest InfiniBand clusters in existence.

While some vendor’s limitations drive them to push one topology choice above others, SGI understands that the best topology is one that matches the needs of the application. Based on high-performance AMD Opteron™ 6200 Series processors, the SGI® ICE 8400 system is designed for flexible and optimized InfiniBand topology configuration.

InfiniBand Topology Considerations and Trade-offs

SGI ICE supports multiple InfiniBand topology choices, including All-to-All, Fat Tree (CLOS), as well as Hypercube and Enhanced Hypercube topologies. Choosing the right topology involves understanding the needs of the application as well as comparing key metrics and cost implications.

SGI ICE Topology Choices

InfiniBand fabrics present different advantages and limitations. The SGI ICE system is designed to flexibly support multiple InfiniBand topologies, including:

  • All-to-All. All-to-All topologies are ideal for applications that are highly sensitive to Message Passing Interface (MPI) latency since they provide minimal latency in terms of hop-count. Though All-to-All topologies can provide non-blocking fabrics, and high bisection bandwidth, they are restricted to relatively small cluster deployments due to limited switch port counts.
  • Fat Tree. Fat Tree or CLOS topologies are well suited for smaller node-count MPI jobs. Fat Tree topologies can provide non-blocking fabrics and consistent hop counts resulting in predictable latency for MPI jobs. At the same time, Fat Tree topologies do not scale linearly with cluster size. Cabling and switching become increasingly difficult and expensive as cluster size grows, with very large core switches required for larger clusters.
  • Standard Hypercube. Standard Hypercube topologies are ideal for large node-count MPI jobs, provide rich bandwidth capabilities, and scale easily from small to extremely large clusters. Hypercubes add orthogonal dimensions of interconnect as they grow, and are easily optimized for both local and global communication within the cluster. Standard Hypercube topology provides the lightest weight fabric at the lowest cost with a single cable typically used for each dimensional link.
  • SGI Enhanced Hypercube. Adding to the benefits of Standard Hypercube topologies, SGI Enhanced Hypercube topologies make use of additional available switch ports by adding redundant links at the lower dimensions of the hypercube to improve the overall bandwidth of the interconnect

SGI ICE 8400: Designed for InfiniBand

The SGI ICE platform is fundamentally architected to provide cost-effective high-performance InfiniBand infrastructure. The SGI ICE 8400 platform in particular is capable of achieving industry-leading scalability without sacrificing application performance efficiency. The platform offers a variety of interconnect options that let organizations scale their applications across hundreds or thousands of processor cores.

The SGI ICE 8400 system can accommodate up to 16 compute blades within each Individual Rack Unit (IRU). The

IRU is a 10 rack unit (10U) chassis that provides power, cooling, system control, and network fabric for up to 16 blades via a backplane. Up to four IRUs are supported in each custom-designed 42U rack, with a choice of either air cooling or water cooling for all configurations. Each rack supports:

  • A maximum of four IRUs
  • Up to 2048 of AMD Opteron ™ 6200 series
  • A maximum of 12.2TB of memory (64 x 192GB)

Conclusion

Effective InfiniBand topology requires system architecture designed with scalability in mind. The SGI ICE system

was purposely designed for InfiniBand networking, and together with the high core density of  AMD Opteron 6200 Series processors, the platform is capable of achieving industry-leading density and scalability for a broad range of technical computing applications. Being the world’s only 16-core x86 processor, the AMD Opteron 6200 Series processor delivers unprecedented scalability for large HPC deployments. With a choice of supported InfiniBand topologies, the SGI ICE system is ideal for deploying InfiniBand clusters ranging from a single 16-node IRU to hundreds of racks and many thousands of nodes.

Selecting an appropriate InfiniBand topology requires careful consideration of applications, algorithms, and data sets, along with likely needs for scalability into the future. In the absence of benchmark data, having some basic knowledge of the application characteristics may be enough to guide topology choices. Extensive testing done by SGI has shown that applications are generally less sensitive to topology than kernel benchmarks, but that differences in performance become more pronounced as clusters grow in size. When global interconnect bandwidth is important, Enhanced Hypercube dual-rail is the raw performance leader. For smaller single-rail topologies, Fat Tree is often the most economical choice. As clusters grow, hypercube topologies gain scalability, performance and cost advantages, avoiding the external switching and cabling that is required for Fat Tree and All-to-All topologies. Having deployed some of the world’s largest open systems InfiniBand networks and clusters, SGI has the experience and expertise to help organizations choose the right equipment and networking topology to meet their most challenging computational problems.

For more information go to: www.sgi.com/go/amd

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This