Selecting the Most Effective InfiniBand Topology for Technical Computing

By Nicole Hemsoth

December 5, 2011

SGI® ICE 8400

Selecting the Most Effective InfiniBand Topology

Across a wide range of disciplines, InfiniBand technology now enables clusters that range from a few systems to the largest technical computing clusters in the world. In only a few years, clustering with InfiniBand has come to easily dominate the top 100 of the Top500 list of supercomputing sites (www.top500.org). As new grand-challenge problems and other computational challenges emerge, larger and larger clusters will be required. Even with now routine advances in processor speed and memory capacity, scaling with cluster size will likely remain the simplest way to grow computational capacity for the world’s most tenacious computational problems. While InfiniBand can be deployed in multiple topologies, choosing the optimum InfiniBand topology can be difficult, with trade-offs in terms of scalability, performance, and cost. SGI has considerable experience in the design and deployment of some of the largest InfiniBand clusters in existence.

While some vendor’s limitations drive them to push one topology choice above others, SGI understands that the best topology is one that matches the needs of the application. Based on high-performance AMD Opteron™ 6200 Series processors, the SGI® ICE 8400 system is designed for flexible and optimized InfiniBand topology configuration.

InfiniBand Topology Considerations and Trade-offs

SGI ICE supports multiple InfiniBand topology choices, including All-to-All, Fat Tree (CLOS), as well as Hypercube and Enhanced Hypercube topologies. Choosing the right topology involves understanding the needs of the application as well as comparing key metrics and cost implications.

SGI ICE Topology Choices

InfiniBand fabrics present different advantages and limitations. The SGI ICE system is designed to flexibly support multiple InfiniBand topologies, including:

  • All-to-All. All-to-All topologies are ideal for applications that are highly sensitive to Message Passing Interface (MPI) latency since they provide minimal latency in terms of hop-count. Though All-to-All topologies can provide non-blocking fabrics, and high bisection bandwidth, they are restricted to relatively small cluster deployments due to limited switch port counts.
  • Fat Tree. Fat Tree or CLOS topologies are well suited for smaller node-count MPI jobs. Fat Tree topologies can provide non-blocking fabrics and consistent hop counts resulting in predictable latency for MPI jobs. At the same time, Fat Tree topologies do not scale linearly with cluster size. Cabling and switching become increasingly difficult and expensive as cluster size grows, with very large core switches required for larger clusters.
  • Standard Hypercube. Standard Hypercube topologies are ideal for large node-count MPI jobs, provide rich bandwidth capabilities, and scale easily from small to extremely large clusters. Hypercubes add orthogonal dimensions of interconnect as they grow, and are easily optimized for both local and global communication within the cluster. Standard Hypercube topology provides the lightest weight fabric at the lowest cost with a single cable typically used for each dimensional link.
  • SGI Enhanced Hypercube. Adding to the benefits of Standard Hypercube topologies, SGI Enhanced Hypercube topologies make use of additional available switch ports by adding redundant links at the lower dimensions of the hypercube to improve the overall bandwidth of the interconnect

SGI ICE 8400: Designed for InfiniBand

The SGI ICE platform is fundamentally architected to provide cost-effective high-performance InfiniBand infrastructure. The SGI ICE 8400 platform in particular is capable of achieving industry-leading scalability without sacrificing application performance efficiency. The platform offers a variety of interconnect options that let organizations scale their applications across hundreds or thousands of processor cores.

The SGI ICE 8400 system can accommodate up to 16 compute blades within each Individual Rack Unit (IRU). The

IRU is a 10 rack unit (10U) chassis that provides power, cooling, system control, and network fabric for up to 16 blades via a backplane. Up to four IRUs are supported in each custom-designed 42U rack, with a choice of either air cooling or water cooling for all configurations. Each rack supports:

  • A maximum of four IRUs
  • Up to 2048 of AMD Opteron ™ 6200 series
  • A maximum of 12.2TB of memory (64 x 192GB)

Conclusion

Effective InfiniBand topology requires system architecture designed with scalability in mind. The SGI ICE system

was purposely designed for InfiniBand networking, and together with the high core density of  AMD Opteron 6200 Series processors, the platform is capable of achieving industry-leading density and scalability for a broad range of technical computing applications. Being the world’s only 16-core x86 processor, the AMD Opteron 6200 Series processor delivers unprecedented scalability for large HPC deployments. With a choice of supported InfiniBand topologies, the SGI ICE system is ideal for deploying InfiniBand clusters ranging from a single 16-node IRU to hundreds of racks and many thousands of nodes.

Selecting an appropriate InfiniBand topology requires careful consideration of applications, algorithms, and data sets, along with likely needs for scalability into the future. In the absence of benchmark data, having some basic knowledge of the application characteristics may be enough to guide topology choices. Extensive testing done by SGI has shown that applications are generally less sensitive to topology than kernel benchmarks, but that differences in performance become more pronounced as clusters grow in size. When global interconnect bandwidth is important, Enhanced Hypercube dual-rail is the raw performance leader. For smaller single-rail topologies, Fat Tree is often the most economical choice. As clusters grow, hypercube topologies gain scalability, performance and cost advantages, avoiding the external switching and cabling that is required for Fat Tree and All-to-All topologies. Having deployed some of the world’s largest open systems InfiniBand networks and clusters, SGI has the experience and expertise to help organizations choose the right equipment and networking topology to meet their most challenging computational problems.

For more information go to: www.sgi.com/go/amd

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This