Flash Forward: SDSC Launches Data-Intensive Supercomputer

By Michael Feldman

December 6, 2011

Gordon, the largest flash memory-based computer on the planet, was officially launched at a ceremony that took place on Monday at the San Diego Supercomputer Center (SDSC). Two years in the making, and backed by a $20 million Track 2 grant from the National Science Foundation (NSF), Gordon represents the first really big purpose-built supercomputer for data-intensive applications.

Mark Seager, formerly of Lawrence Livermore National Laboratory and now Intel’s CTO for the HPC Ecosystems group, spoke at the event, saying that the data-intensive technologies that are being pioneered in Gordon are destined to make their way into the wider enterprise market. But, he noted, they have special relevance to the HPC community. “We see big data as a new frontier in high performance computing,” said Seager.

The intention of SDSC and the NSF is to draw in data-intensive science codes that have never had a platform this size to push the envelope. This is particularly true of in genomics, an application set that was foremost in the minds of the system engineers when the machine was being designed. Genomics is the classic “big data” science problem, and is the one most frequently cited in HPC circles as suffering from the data deluge crisis. Other application areas like graph problems, geophysics, financial market analytics, and data mining are also expected to be important domains for Gordon.

Hardware-wise, the system is a souped-up Appro HPC cluster, using the vendor’s third-generation Xtreme-X architecture and outfitted with Intel’s new 22nm “Sandy Bridge” Xeon E5 CPUs (which, by the way, are still are not generally available). Consisting of 1,024 dual-socket, nodes with 64 GB of DDR3 memory, Gordon delivers a peak performance of 280 teraflops. That’s not exactly top tier computing in the petascale age, however it was enough to earn the system 48th place on the latest TOP500 list.

But it’s the flash memory set-up that makes Gordon a data monster. The system is outfitted with over 300 TB of Intel solid state disks, spread over 64 “I/O nodes.” According to SDSC director Mike Norman, that’s enough flash capacity to store the entire Netflix movie catalog three times over. It’s also enough to hold 100,000 human genomes, which is probably bigger than that particular data set as it exists today.

More impressive is the aggregate IOPS performance of the machine. At the ceremony on Monday, Norman cranked up all 64 I/O nodes, demonstrating a peak output of 36 million IOPS. At that rate, you could download 220 movies per second.

The other unique aspect to Gordon is its use of ScaleMP’s “Versatile SMP” (vSMP) technology. It allows users to run large-memory applications on what they call a “supernode” — an aggregation of 32 Gordon servers and two I/O servers, providing access to 512 cores, 2 TB of RAM and 9.6 TB of flash. To a program running on a supernode, the hardware behaves as a big cache coherent server. As many as 32 of these supernodes can be carved from the machine at one time. According to ScaleMP founder and CEO Shai Fultheim, Gordon is the largest system in the world that is deployed with its technology.

The flash device being employed is Intel’s new iSolid-State Drive 710, which was launched in September at the Intel Developer Forum in San Francisco. The 710 uses Intel’s High Endurance Technology (HET), which is the chipmaker’s version of enterprise multi-level cell (eMLC) flash memory that other flash vendors are now offering. Like eMLC, the HET flash features the performance and resiliency of single-level cell (SLC) flash, but at a much lower cost. SDSC also developed its own flash device drivers to maximize performance of the SSD gear.

Inserting this much flash memory into a supercomputer had never been attempted before, and this aspect was probably the biggest risk for the project. When they began the Gordon effort two years ago, flash memory was just starting to make its way into enterprise storage and was an expensive and unproven technology. The $20 million in funding for a flashed-laden supercomputer was predicated on projections that the cost and density of NAND memory would make a multi-hundred terabyte SSD deployment feasible by 2011.

That more or less turned out to be the case, but the global recession and the meteoric rise of smartphones and other mobile computing devices over the last couple of years spiked the price flash memory as supplies dwindled. The recent commercialization of enterprise-capable MLC flash, as in the Intel SSDs, turned out to be something of a gift for Gordon, allowing SDSC to increase the initial flash capacity of 256 TB to more than 300 TB.

SDSC was also somewhat fortunate to have found a willing partner in Appro, a tier 2 system vendor that was prepared to build a rather unconventional HPC cluster. According to SDSC associate director Allan Snavely, they approached both IBM and Cray about taking on Gordon, but both vendors essentially said they were unwilling to tweak their product roadmaps for a single $20 million contract. Appro, of course, is hoping Gordon is not a one-off machine.

Although the system was officially launched on Monday, it is currently undergoing acceptance testing and is expected to be available for production use by XSEDE users on January 1.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This