NVIDIA Eyes Post-CUDA Era of GPU Computing

By Michael Feldman

December 7, 2011

Lost in the flotilla of vendor news at the Supercomputing Conference (SC11) in Seattle last month was the announcement of a new directives-based parallel programming standard for accelerators.  Called OpenACC, the open standard is intended to bring GPU computing into the realm of the average programmer, while making the resulting code portable across other accelerators and even multicore CPUs.

For obvious reasons, OpenACC is being heavily promoted and supported by NVIDIA, but it is The Portland Group (PGI) and Cray who are driving the early effort to commercialize the technology. PGI already has implemented a very similar a set of accelerator directives, which became part of the foundation for the OpenACC standard. Cray is developing its own OpenACC compiler and its XK6 customers, like Oak Ridge National Lab and the Swiss National Supercomputing Centre, are expected to be among the first supercomputer users of the technology

In a nutshell, OpenACC directives work much the same as OpenMP directives, but are specifically applicable to highly data parallel codes.  They can be inserted into standard C, C++ and Fortran programs to direct the compiler to parallelize certain code sections.  The compiler takes care of the logistics of moving data back and forth between the CPU and the GPU (or whatever) and mapping the computation onto the appropriate processor.

The idea is to enable developers to make relatively small modifications to existing (or new) code in order to expose  parallel regions for acceleration.  Since the directives are designed to apply to a generic parallel processor, the same code can run on a multicore CPU, GPU, or any other type of parallel hardware that is supported by the compiler.  This hardware independence is especially important to the HPC community, which is loathe to adopt vendor-specific, non-portable programming environments.

From NVIDIA’s perspective, the overriding goal is to bring GPU computing into the post-CUDA age.  CUDA C and Fortran are the most widely used programming languages for GPU programming today, but the underlying technology is proprietary to NVIDIA and offers a relatively low-level software model of GPU computing. As a result, the use of CUDA today tends to be restricted to computer science types, rather than the average programmer or researcher.

OpenCL, which is supported by NVIDIA, AMD and many others, also provides a parallel programming framework for GPUs and other accelerators, and unlike CUDA, is a bona fide open standard (under the direction of the Khronos Group — the same organization that brought us OpenGL).  But like CUDA, OpenCL is relatively low-level, requiring a fairly intimate knowledge of the inner workings of the target processor.  Therefore, like CUDA, use of OpenCL is mostly confined to computer scientists.

NVIDIA estimates there are over 100,000 CUDA programmers on the planet and a substantially smaller number of OpenCL developers, but they see a much larger potential audience if they can make GPU programming more open and developer-friendly.  Essentially they believe OpenACC will be able to make GPU technology accessible to the millions of scientists and researchers who don’t care to dabble in the low-level intricacies of processor architectures and chip-to-chip communications.

Steve Scott, CTO of NVIDIA’s Tesla business unit, sums up the goal of OpenACC thusly: “What we’d like to do at this point is to substantially increase the breadth of applicability and the number of people using GPUs.”

According to Scott, the high-level nature of OpenACC is not going to impact execution performance significantly. While in his previous CTO role at Cray, he encountered accelerator directives-based codes that were getting within 5 or 10 percent of the performance of hand-coded CUDA.  According to him, that was fairly typical.  Some applications, Scott says, were even doing better than their CUDA alternates, thanks to the ability of the compiler to optimize certain codes beyond what mere mortals could achieve. In any case, OpenACC is designed to be interoperable with CUDA, so hand-tuned kernels can work seamlessly with directives-based code if need be.

Besides PGI and Cray, CAPS enterprise, a French developer of multicore software tools, has also signed up to support the new directives.  All three vendors are expected to have compilers with OpenACC support ready in the first half of 2012.  Notably missing from the list of OpenACC supporters are Intel and AMD, although both have processors (multicore x86, AMD APUs and GPUs, and the Intel MIC) that would certainly be capable targets. That wouldn’t necessarily stop PGI, CAPS, or Cray from building OpenACC-enabled compilers for Intel and AMD hardware, however.

PGI and NVIDIA are in the process of running a free 30-day trial for developers interested in kicking the tires on PGI’s current accelerator directive compiler. The claim is that the technology will at least double application performance with less than 4 weeks of developer effort. Hundreds of researchers have already registered for the trial and this week NVIDIA has reported some initial results. At least one developer was able to get a 5X performance boost on his application after just a single day of tweaking the code.

But the real end game for OpenACC supporters is for the directives to be incorporated into the OpenMP standard.  Since OpenACC was derived from work done within the OpenMP Working Group on Accelerators, it stands to reason that this will indeed happen. Although there is no timeline for when the technology will be folded into OpenMP, it’s most likely to be occur in conjunction with the release of OpenMP 4.0, which is expected to be launched sometime in 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that d Read more…

By Doug Black

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

New Data Management Techniques for Intelligent Simulations

The trend in high performance supercomputer design has evolved – from providing maximum compute capability for complex scalable science applications, to capacity computing utilizing efficient, cost-effective computing power for solving a small number of large problems or a large number of small problems. Read more…

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competition. This is the twelfth time that teams of university undergr Read more…

By Dan Olds

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

At SC18: GM, Boeing, Deere, BP Talk Enterprise HPC Strategies

November 9, 2018

SC18 in Dallas (Nov.11-16) will feature an impressive series of sessions focused on the enterprise HPC deployments at some of the largest industrial companies: Read more…

By Doug Black

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This