NVIDIA Eyes Post-CUDA Era of GPU Computing

By Michael Feldman

December 7, 2011

Lost in the flotilla of vendor news at the Supercomputing Conference (SC11) in Seattle last month was the announcement of a new directives-based parallel programming standard for accelerators.  Called OpenACC, the open standard is intended to bring GPU computing into the realm of the average programmer, while making the resulting code portable across other accelerators and even multicore CPUs.

For obvious reasons, OpenACC is being heavily promoted and supported by NVIDIA, but it is The Portland Group (PGI) and Cray who are driving the early effort to commercialize the technology. PGI already has implemented a very similar a set of accelerator directives, which became part of the foundation for the OpenACC standard. Cray is developing its own OpenACC compiler and its XK6 customers, like Oak Ridge National Lab and the Swiss National Supercomputing Centre, are expected to be among the first supercomputer users of the technology

In a nutshell, OpenACC directives work much the same as OpenMP directives, but are specifically applicable to highly data parallel codes.  They can be inserted into standard C, C++ and Fortran programs to direct the compiler to parallelize certain code sections.  The compiler takes care of the logistics of moving data back and forth between the CPU and the GPU (or whatever) and mapping the computation onto the appropriate processor.

The idea is to enable developers to make relatively small modifications to existing (or new) code in order to expose  parallel regions for acceleration.  Since the directives are designed to apply to a generic parallel processor, the same code can run on a multicore CPU, GPU, or any other type of parallel hardware that is supported by the compiler.  This hardware independence is especially important to the HPC community, which is loathe to adopt vendor-specific, non-portable programming environments.

From NVIDIA’s perspective, the overriding goal is to bring GPU computing into the post-CUDA age.  CUDA C and Fortran are the most widely used programming languages for GPU programming today, but the underlying technology is proprietary to NVIDIA and offers a relatively low-level software model of GPU computing. As a result, the use of CUDA today tends to be restricted to computer science types, rather than the average programmer or researcher.

OpenCL, which is supported by NVIDIA, AMD and many others, also provides a parallel programming framework for GPUs and other accelerators, and unlike CUDA, is a bona fide open standard (under the direction of the Khronos Group — the same organization that brought us OpenGL).  But like CUDA, OpenCL is relatively low-level, requiring a fairly intimate knowledge of the inner workings of the target processor.  Therefore, like CUDA, use of OpenCL is mostly confined to computer scientists.

NVIDIA estimates there are over 100,000 CUDA programmers on the planet and a substantially smaller number of OpenCL developers, but they see a much larger potential audience if they can make GPU programming more open and developer-friendly.  Essentially they believe OpenACC will be able to make GPU technology accessible to the millions of scientists and researchers who don’t care to dabble in the low-level intricacies of processor architectures and chip-to-chip communications.

Steve Scott, CTO of NVIDIA’s Tesla business unit, sums up the goal of OpenACC thusly: “What we’d like to do at this point is to substantially increase the breadth of applicability and the number of people using GPUs.”

According to Scott, the high-level nature of OpenACC is not going to impact execution performance significantly. While in his previous CTO role at Cray, he encountered accelerator directives-based codes that were getting within 5 or 10 percent of the performance of hand-coded CUDA.  According to him, that was fairly typical.  Some applications, Scott says, were even doing better than their CUDA alternates, thanks to the ability of the compiler to optimize certain codes beyond what mere mortals could achieve. In any case, OpenACC is designed to be interoperable with CUDA, so hand-tuned kernels can work seamlessly with directives-based code if need be.

Besides PGI and Cray, CAPS enterprise, a French developer of multicore software tools, has also signed up to support the new directives.  All three vendors are expected to have compilers with OpenACC support ready in the first half of 2012.  Notably missing from the list of OpenACC supporters are Intel and AMD, although both have processors (multicore x86, AMD APUs and GPUs, and the Intel MIC) that would certainly be capable targets. That wouldn’t necessarily stop PGI, CAPS, or Cray from building OpenACC-enabled compilers for Intel and AMD hardware, however.

PGI and NVIDIA are in the process of running a free 30-day trial for developers interested in kicking the tires on PGI’s current accelerator directive compiler. The claim is that the technology will at least double application performance with less than 4 weeks of developer effort. Hundreds of researchers have already registered for the trial and this week NVIDIA has reported some initial results. At least one developer was able to get a 5X performance boost on his application after just a single day of tweaking the code.

But the real end game for OpenACC supporters is for the directives to be incorporated into the OpenMP standard.  Since OpenACC was derived from work done within the OpenMP Working Group on Accelerators, it stands to reason that this will indeed happen. Although there is no timeline for when the technology will be folded into OpenMP, it’s most likely to be occur in conjunction with the release of OpenMP 4.0, which is expected to be launched sometime in 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This