NVIDIA Eyes Post-CUDA Era of GPU Computing

By Michael Feldman

December 7, 2011

Lost in the flotilla of vendor news at the Supercomputing Conference (SC11) in Seattle last month was the announcement of a new directives-based parallel programming standard for accelerators.  Called OpenACC, the open standard is intended to bring GPU computing into the realm of the average programmer, while making the resulting code portable across other accelerators and even multicore CPUs.

For obvious reasons, OpenACC is being heavily promoted and supported by NVIDIA, but it is The Portland Group (PGI) and Cray who are driving the early effort to commercialize the technology. PGI already has implemented a very similar a set of accelerator directives, which became part of the foundation for the OpenACC standard. Cray is developing its own OpenACC compiler and its XK6 customers, like Oak Ridge National Lab and the Swiss National Supercomputing Centre, are expected to be among the first supercomputer users of the technology

In a nutshell, OpenACC directives work much the same as OpenMP directives, but are specifically applicable to highly data parallel codes.  They can be inserted into standard C, C++ and Fortran programs to direct the compiler to parallelize certain code sections.  The compiler takes care of the logistics of moving data back and forth between the CPU and the GPU (or whatever) and mapping the computation onto the appropriate processor.

The idea is to enable developers to make relatively small modifications to existing (or new) code in order to expose  parallel regions for acceleration.  Since the directives are designed to apply to a generic parallel processor, the same code can run on a multicore CPU, GPU, or any other type of parallel hardware that is supported by the compiler.  This hardware independence is especially important to the HPC community, which is loathe to adopt vendor-specific, non-portable programming environments.

From NVIDIA’s perspective, the overriding goal is to bring GPU computing into the post-CUDA age.  CUDA C and Fortran are the most widely used programming languages for GPU programming today, but the underlying technology is proprietary to NVIDIA and offers a relatively low-level software model of GPU computing. As a result, the use of CUDA today tends to be restricted to computer science types, rather than the average programmer or researcher.

OpenCL, which is supported by NVIDIA, AMD and many others, also provides a parallel programming framework for GPUs and other accelerators, and unlike CUDA, is a bona fide open standard (under the direction of the Khronos Group — the same organization that brought us OpenGL).  But like CUDA, OpenCL is relatively low-level, requiring a fairly intimate knowledge of the inner workings of the target processor.  Therefore, like CUDA, use of OpenCL is mostly confined to computer scientists.

NVIDIA estimates there are over 100,000 CUDA programmers on the planet and a substantially smaller number of OpenCL developers, but they see a much larger potential audience if they can make GPU programming more open and developer-friendly.  Essentially they believe OpenACC will be able to make GPU technology accessible to the millions of scientists and researchers who don’t care to dabble in the low-level intricacies of processor architectures and chip-to-chip communications.

Steve Scott, CTO of NVIDIA’s Tesla business unit, sums up the goal of OpenACC thusly: “What we’d like to do at this point is to substantially increase the breadth of applicability and the number of people using GPUs.”

According to Scott, the high-level nature of OpenACC is not going to impact execution performance significantly. While in his previous CTO role at Cray, he encountered accelerator directives-based codes that were getting within 5 or 10 percent of the performance of hand-coded CUDA.  According to him, that was fairly typical.  Some applications, Scott says, were even doing better than their CUDA alternates, thanks to the ability of the compiler to optimize certain codes beyond what mere mortals could achieve. In any case, OpenACC is designed to be interoperable with CUDA, so hand-tuned kernels can work seamlessly with directives-based code if need be.

Besides PGI and Cray, CAPS enterprise, a French developer of multicore software tools, has also signed up to support the new directives.  All three vendors are expected to have compilers with OpenACC support ready in the first half of 2012.  Notably missing from the list of OpenACC supporters are Intel and AMD, although both have processors (multicore x86, AMD APUs and GPUs, and the Intel MIC) that would certainly be capable targets. That wouldn’t necessarily stop PGI, CAPS, or Cray from building OpenACC-enabled compilers for Intel and AMD hardware, however.

PGI and NVIDIA are in the process of running a free 30-day trial for developers interested in kicking the tires on PGI’s current accelerator directive compiler. The claim is that the technology will at least double application performance with less than 4 weeks of developer effort. Hundreds of researchers have already registered for the trial and this week NVIDIA has reported some initial results. At least one developer was able to get a 5X performance boost on his application after just a single day of tweaking the code.

But the real end game for OpenACC supporters is for the directives to be incorporated into the OpenMP standard.  Since OpenACC was derived from work done within the OpenMP Working Group on Accelerators, it stands to reason that this will indeed happen. Although there is no timeline for when the technology will be folded into OpenMP, it’s most likely to be occur in conjunction with the release of OpenMP 4.0, which is expected to be launched sometime in 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Quantum Start-up Rigetti Acquires QxBranch; Bolsters App Dev Capability

July 11, 2019

Quantum startup Rigetti Computing announced today it acquired QxBranch, a quantum computing and data analytics software startup. The latest move marks what has been a busy year for Rigetti. Roughly one year ago, it annou Read more…

By John Russell

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

Intel Partners with Baidu on Neural Network Training Chip

July 2, 2019

A pillar of Intel’s emerging AI product portfolio, its upcoming Nervana Neural Network Processor for training (NNP-T), will be a collaborative development eff Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This