NVIDIA Eyes Post-CUDA Era of GPU Computing

By Michael Feldman

December 7, 2011

Lost in the flotilla of vendor news at the Supercomputing Conference (SC11) in Seattle last month was the announcement of a new directives-based parallel programming standard for accelerators.  Called OpenACC, the open standard is intended to bring GPU computing into the realm of the average programmer, while making the resulting code portable across other accelerators and even multicore CPUs.

For obvious reasons, OpenACC is being heavily promoted and supported by NVIDIA, but it is The Portland Group (PGI) and Cray who are driving the early effort to commercialize the technology. PGI already has implemented a very similar a set of accelerator directives, which became part of the foundation for the OpenACC standard. Cray is developing its own OpenACC compiler and its XK6 customers, like Oak Ridge National Lab and the Swiss National Supercomputing Centre, are expected to be among the first supercomputer users of the technology

In a nutshell, OpenACC directives work much the same as OpenMP directives, but are specifically applicable to highly data parallel codes.  They can be inserted into standard C, C++ and Fortran programs to direct the compiler to parallelize certain code sections.  The compiler takes care of the logistics of moving data back and forth between the CPU and the GPU (or whatever) and mapping the computation onto the appropriate processor.

The idea is to enable developers to make relatively small modifications to existing (or new) code in order to expose  parallel regions for acceleration.  Since the directives are designed to apply to a generic parallel processor, the same code can run on a multicore CPU, GPU, or any other type of parallel hardware that is supported by the compiler.  This hardware independence is especially important to the HPC community, which is loathe to adopt vendor-specific, non-portable programming environments.

From NVIDIA’s perspective, the overriding goal is to bring GPU computing into the post-CUDA age.  CUDA C and Fortran are the most widely used programming languages for GPU programming today, but the underlying technology is proprietary to NVIDIA and offers a relatively low-level software model of GPU computing. As a result, the use of CUDA today tends to be restricted to computer science types, rather than the average programmer or researcher.

OpenCL, which is supported by NVIDIA, AMD and many others, also provides a parallel programming framework for GPUs and other accelerators, and unlike CUDA, is a bona fide open standard (under the direction of the Khronos Group — the same organization that brought us OpenGL).  But like CUDA, OpenCL is relatively low-level, requiring a fairly intimate knowledge of the inner workings of the target processor.  Therefore, like CUDA, use of OpenCL is mostly confined to computer scientists.

NVIDIA estimates there are over 100,000 CUDA programmers on the planet and a substantially smaller number of OpenCL developers, but they see a much larger potential audience if they can make GPU programming more open and developer-friendly.  Essentially they believe OpenACC will be able to make GPU technology accessible to the millions of scientists and researchers who don’t care to dabble in the low-level intricacies of processor architectures and chip-to-chip communications.

Steve Scott, CTO of NVIDIA’s Tesla business unit, sums up the goal of OpenACC thusly: “What we’d like to do at this point is to substantially increase the breadth of applicability and the number of people using GPUs.”

According to Scott, the high-level nature of OpenACC is not going to impact execution performance significantly. While in his previous CTO role at Cray, he encountered accelerator directives-based codes that were getting within 5 or 10 percent of the performance of hand-coded CUDA.  According to him, that was fairly typical.  Some applications, Scott says, were even doing better than their CUDA alternates, thanks to the ability of the compiler to optimize certain codes beyond what mere mortals could achieve. In any case, OpenACC is designed to be interoperable with CUDA, so hand-tuned kernels can work seamlessly with directives-based code if need be.

Besides PGI and Cray, CAPS enterprise, a French developer of multicore software tools, has also signed up to support the new directives.  All three vendors are expected to have compilers with OpenACC support ready in the first half of 2012.  Notably missing from the list of OpenACC supporters are Intel and AMD, although both have processors (multicore x86, AMD APUs and GPUs, and the Intel MIC) that would certainly be capable targets. That wouldn’t necessarily stop PGI, CAPS, or Cray from building OpenACC-enabled compilers for Intel and AMD hardware, however.

PGI and NVIDIA are in the process of running a free 30-day trial for developers interested in kicking the tires on PGI’s current accelerator directive compiler. The claim is that the technology will at least double application performance with less than 4 weeks of developer effort. Hundreds of researchers have already registered for the trial and this week NVIDIA has reported some initial results. At least one developer was able to get a 5X performance boost on his application after just a single day of tweaking the code.

But the real end game for OpenACC supporters is for the directives to be incorporated into the OpenMP standard.  Since OpenACC was derived from work done within the OpenMP Working Group on Accelerators, it stands to reason that this will indeed happen. Although there is no timeline for when the technology will be folded into OpenMP, it’s most likely to be occur in conjunction with the release of OpenMP 4.0, which is expected to be launched sometime in 2012.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU--and a refresh of its inference server software packaged as Read more…

By George Leopold

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

NSF Highlights Expanded Efforts for Broadening Participation in Computing

September 13, 2018

Today, the Directorate of Computer and Information Science and Engineering (CISE) of the NSF released a letter highlighting the expansion of its broadening participation in computing efforts. The letter was penned by Jam Read more…

By Staff

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This