Revisiting Supercomputer Architectures

By Chris Willard

December 8, 2011

The chronology of high performance computing can be divided into “ages” based on the predominant systems architectures for the period. Starting in the late 1970s vector processors dominated HPC. By the end of the next decade massively parallel processors were able to make a play for market leader. For the last half of the 1990s, RISC based SMPs were the leading technology. And finally, clustered x86 based servers captured market priority in the early part of this century. 

This architectural path was dictated by the technical and economic effect of Moore’s Law. Specifically, the doubling of processor clock speed every 18 to 24 months meant that without doing anything, applications also roughly doubled in speed at the same rate. One effect of this “free ride” was to drive companies attempting to create new HPC architectures from the market. Development cycles for new technology simply could not outpace Moore’s Law-driven gains in commodity technology, and product development costs for specialized systems could not compete against products sold to volume markets.

The more general-purpose systems were admittedly not the best architectures for HPC users’ problems. However commodity component based computers were inexpensive, could be racked and stacked, and were continually getting faster. In addition, users could attempt to parallelize their applications across multiple compute nodes to get additional speed ups. In a recent Intersect360 study, users reported a wide range of scalable applications, with some using over 10,000 cores, but with the median number of cores used by a typical HPC application of only 36 cores.

In the mid 2000s, Moore’s Law went through a major course correction. While the number of transistors on a chip continued to double on schedule, the ability to increase clock speed hit a practical barrier — “the power wall.” The exponential increase in power required to increase processor cycle times hit practical cost and design limits. The power wall led to clock speeds stabilizing at roughly 3GHz and multiple processor cores being placed on a single chip with core counts now ranging from 2 to 16. This ended the free ride for HPC users based on ever faster single-core processors and is forcing them to rewrite applications for parallelism.

In addition to the power wall, the scale out strategy of adding capacity by simply racking and stacking more compute server nodes caused some users to hit other walls, specifically the computer room wall (or “wall wall”) where facilities issues became a major problem. These include physical space, structural support for high density configurations, cooling, and getting enough electricity into the building.

The market is currently looking to a combination of four strategies to increase the performance of HPC systems and applications: parallel applications development; adding accelerators to standard commodity compute nodes; developing new purpose-built systems; and waiting for a technology breakthrough.

Parallelism is like the “little girl with the curl,” when parallelism is good it is very, very good, and when it is bad it is horrid. Very good parallel applications (aka embarrassingly parallel) fall into such categories as: signal processing, Monte Carlo analysis, image rendering, and the TOP500 benchmark. The success of these areas can obscure the difficulty in developing parallel applications in other areas. Embarrassingly parallel applications have a few characteristics in common:

  • The problem can be broken up into a large number of sub-problems.
  • These sub-problem are independent of one another, that is they can be solved in any order and without requiring any data transfer to or from other sub-problems,
  • The sub-problems are small enough to be effectively solved on whatever the compute node du jour might be.

When these constraints break down, the programming problem first becomes interesting, then challenging, then maddening, then virtually impossible. The programmer must manage ever more complex data traffic patterns between sub-problems, plus control the order of operations of various tasks, plus attempt to find ways to break larger sub-problems into sub-sub-problems, and so on. If this were easy it would have been done long ago.

Adding accelerators to standard computer architectures is a technique that has been used throughout the history of computer architecture development. Current HPC markets are experimenting with graphics processing units (GPUs) and to a lesser extent field programmable gate arrays (FPGAs).

GPUs have long been a standard component in desktop computers. GPUs are of interest for several reasons: they are inexpensive commodity components, they have fast independent memories, and they provide significant parallel computational power.

FPGAs are standard devices long in use within the electronics industry for quickly developing and fielding specialty chips that are often replaced in products by standard ASICs over time. FPGAs allow HPC users to essentially customize the computer to the requirements of their applications. In addition they should benefit from Moore’s Law advancements over time.

Challenges for accelerator-based systems stem from a single program being run over two different processing devices, one a general-purpose processor with limited speed, and the other an accelerator with high processing speed but with limited overall functionality. Challenges fall into three major areas:

  • Programming — Computers can be built to arbitrarily high levels of complexity, however the average complexity of computer programmers remains a constant. Accelerators add two levels of complexity for applications development, first writing a single program that is divided between two different processor types, and second, writing a program that can take advantage of the specific characteristics of the accelerator.
  • Control and communications — Performance gains from accelerations can be diminished or lost from compute overhead generated from setting up the problem on the accelerator, moving data between the standard processor and the accelerator, and coordinating the operations of both compute units.
  • Data management — Programming complexity is increased and performance is reduced in cases where the standard processor and accelerator use separate independent memories. Issues for managing data across multiple processors range from determining proper data decomposition, to efficiently moving data in and out of the proper memories, to stalling processes while waiting on data from another memory, to debugging programs where it is unclear which processor has last modified a data item.

Many of these issues are associated with parallel computing in general, however they are still significant for accelerator-based operations, and the close coupling between the processor and the accelerator may require programmers to have a deep understanding of the behavior of the physical hardware components.

Purpose-built systems are systems that are designed to meet the requirements of HPC workflows. (These systems were initially called supercomputers.) In today’s market, new HPC architectures still make use of commodity components such as processor chips, memory chips/DIMMS, accelerators, I/O ports, and so on. However they introduce novel technologies in such areas as:

  • Memory subsystems — Arguably the most important part of any HPC computer is the memory system. HPC applications tend to stream a few large data sets from storage through memory, into processors, and back again for a normal workflow. In addition, such requirements as spare matrix calculations lead to requirements for fast access to non-contiguous data elements. The speed at which the data can be moved is the determining factor in the ultimate performance in a large portion, if not the majority, of HPC applications.
  • Parallel system interconnects — Parallel computer essentially address the memory bandwidth problem by creating a logically two dimension memory structure, one dimension is within nodes. i.e., between a nodes local memory and local processors. Total bandwidth in this case is the sum off all node bandwidths and is very high. The second dimension is the node to node interconnect, which is essentially a specialized local area network that is significantly slower in both bandwidth and latency measures than local node memories. As applications become less embarrassingly parallel the communications over the interconnect increases, and the interconnect performance tends to become the limiting factor in overall applications performance.
  • Packaging — The speed of computer components. i.e., processors and memories can be increased by reducing the temperature at which they run. In addition, parallel computing latency issues can be addressed by simply packing nodes closer together, which requires both fitting more wires into a smaller space, and removing high amounts of heat from relatively small volumes.

Developing specialized HPC architectures has, up until recently, been limited by the effects of Moore’s Law, which has shortened product cycle times for standard products, and limited market opportunities for specialized systems. Those HPC architecture efforts that have gone forward have generally received support from government and/or large corporation R&D funds.

Waiting for a technology breakthrough (or the “then a miracle happens” strategy) is always an alternative; it is also the path of least resistance, and one step short of despair. Today we are looking at such technologies as optical computing, quantum entanglement communications, and quantum computers for potential future breakthroughs.

The issue with relying on future technologies is there is no way to tell first, if a technology concept can be turned into viable a product — there is many a slip between the lab and loading dock. Second, even if it can be shown that a concept can be productized, it is virtually impossible to predict when the product will actually reach the market. Even products based on well understood production technologies can badly overrun schedules, sometimes bringing to grief those vendors and users who bet on new products.

The above arguments suggests that the next age of high performance computing could be based on anything from reliance on clusters with speed boosts add-ons, to a brave new computer based on technologies that may not have been heard of yet. (You can never go wrong with a forecast like that.) That said, I am willing to lay odds on purpose-built computers becoming a major component, if not the defining technology of the HPC market within the next five years, for two major reasons.

First, there is no “easy” technical solution. Single thread performance has plateaued; the usefulness of accelerators is dependent on both the parallelism inherent to the application and the connectivity between the accelerator and the rest of the system; and parallelism, while an advantage where it can be found, is not a panacea for computing performance.

Second, the economics of HPC system development have changed. Users cannot simply sit back and wait for a faster CPU, but must make significant investments in either new software, or new architectures, or both. Staying with old economic models will lead to the computation tools defining the science, where work will be restricted to those areas that will run well on off-the-shelf computers.

The HPC market is at a point where the business climate will support greater levels of innovation at the architectural level, which should lead to new organizing principle for HPC systems. The goal here is to find new approaches that will effectively combine and optimize the various standard components into systems that can continue to grow performance across a broad range of applications.

Of course we can always wait for a miracle to happen.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

HPE Extreme Performance Solutions

Object Storage is the Ideal Storage Method for CME Companies

The communications, media, and entertainment (CME) sector is experiencing a massive paradigm shift driven by rising data volumes and the demand for high-performance data analytics. Read more…

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

Here’s What a Neural Net Looks Like On the Inside

February 15, 2017

Ever wonder what the inside of a machine learning model looks like? Today Graphcore released fascinating images that show how the computational graph concept maps to a new graph processor and graph programming framework it’s creating. Read more…

By Alex Woodie

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

HPC Cloud Startup Launches ‘App Store’ for HPC Workflows

February 9, 2017

“Civilization advances by extending the number of important operations which we can perform without thinking about them,” Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This