NVIDIA Opens Up CUDA Compiler

By Michael Feldman

December 13, 2011

GPU maker NVIDIA is going to make its CUDA compiler runtime source code, and internal representation format public, opening up the technology for different programming languages and processor architectures. The announcement was made on Wednesday at the kick-off of the GPU Technology Conference Asia in Beijing, China.

The company says it will use the LLVM compiler infrastructure as the vehicle for the public CUDA source code. LLVM is a open source project that maintains source code collections of various of compile, runtimes, and other development tools. The new LLVM-based CUDA source, will be available in the latest release of the CUDA Toolkit, version 4.1, which was also launched this week.

The CUDA open source set-up does not, however, mean NVIDIA will arbitrarily accept changes and enhancements to its compiler technology from other developers. The company still intends to retain complete control of its source code.  Tool developers will be able to modify the standard compiler and runtime for their own customized needs, but little of this is likely to be folded back into NVIDIA’s code base

The main idea is to allow software tool makers to port the CUDA compiler to other environments that NVIDIA or its commercial partners are not interested in pursuing on their own. In the case of programming languages, there are already compilers for C, C++, and Fortran, which are the big three for high performance computing. But as the market for GPU computing expands, NVIDIA foresees the need for other languages such as Python or Java, as well as domain specific languages.

As far as CUDA compiler targets, there is a lot of room for interesting ports to other platforms. The prime candidate here is the AMD/ATI GPU platform. Even though CUDA is the most widespread programming environment for GPU computing, it only currently works on NVIDIA GPUs (and x86 multicore via a PGI compiler implementation). There are likely to be plenty of users with CUDA-based applications that are now interested in running their applications on AMD GPUs/APUs, or at least are interested in the prospect that their codes can do so at some future date.

AMD is still pushing its OpenCL strategy for GPU computing. OpenCL, a non-vendor-specific open standard for parallel computing, is supported by NVIDIA as well, but has not yet managed to attract a lot applications. By offering to open up CUDA, NVIDIA has probably blunted some of the appeal of OpenCL, that is, assuming a compiler vendor or an academic research group builds an CUDA-ized AMD GPU compiler.

Since CUDA is a general-purpose parallel computing technology, essentially any multicore/manycore architecture would be a potential target. Other possible architectures for CUDA include Intel’s upcoming Many Integrated Core (MIC) coprocessor, Power CPUs, multicore ARM chips (especially for future 64-bit implementations), and even more exotic fare, like Texas Instruments’ new floating-point capable DSPs.

The academic community most likely to take early advantage of an open CUDA compiler.  For example, at Georgia Tech, the Ocelot project is focused on applying CUDA C to different processors, including AMD GPUs and x86-CPUs. The project lead there, Sudhakar Yalamanchili, says the opening up of the CUDA technology is “a significant step.”
Even compiler vendors who already have special arrangements with NVIDIA will be able to take advantage of the new open source strategy. In the press release, The Portland Group (PGI) director Doug Miles says “This initiative enables PGI to create native CUDA Fortran and OpenACC compilers that leverage the same device-level optimization technology used by NVIDIA CUDA C/C++. It will enable seamless debugging and profiling using existing tools, and allow PGI to focus on higher-level optimizations and language features.”

NVIDIA will not always directly benefit from its new open source stance. Certainly, if some enterprising team ports CUDA to AMD chips, that could cut into Tesla GPU sales. But for the greater good of attracting customers to its own hardware, NVIDIA realized that a closed platform discourages plenty of users who don’t want to be locked into a single hardware platform or rely on a sole vendor. As with NVIDIA’s recent endorsement of the OpenACC directives, the opening of CUDA  seems to be part of a strategy designed to broaden the appeal of GPU computing rather than just NVIDIA products. It appears the GPU maker has calculated that expanding the pie will get them further in the long run than just trying to maximize their slice of it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Nvidia Debuts Turing Architecture, Focusing on Real-Time Ray Tracing

August 16, 2018

From the SIGGRAPH professional graphics conference in Vancouver this week, Nvidia CEO Jensen Huang unveiled Turing, the company's next-gen GPU platform that introduces new RT Cores to accelerate ray tracing and new Tenso Read more…

By Tiffany Trader

HPC Coding: The Power of L(o)osing Control

August 16, 2018

Exascale roadmaps, exascale projects and exascale lobbyists ask, on-again-off-again, for a fundamental rewrite of major code building blocks. Otherwise, so they claim, codes will not scale up. Naturally, some exascale pr Read more…

By Tobias Weinzierl

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum technology used. One idea is to mitigate noisiness and perh Read more…

By John Russell

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

Super Problem Solving

You might think that tackling the world’s toughest problems is a job only for superheroes, but at special places such as the Oak Ridge National Laboratory, supercomputers are the real heroes. Read more…

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak) supercomputer that will be used to advance early-stage R&a Read more…

By Tiffany Trader

STAQ(ing) the Quantum Computing Deck

August 16, 2018

Quantum computers – at least for now – remain noisy. That’s another way of saying unreliable and in diverse ways that often depend on the specific quantum Read more…

By John Russell

NREL ‘Eagle’ Supercomputer to Advance Energy Tech R&D

August 14, 2018

The U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) has contracted with Hewlett Packard Enterprise (HPE) for a new 8-petaflops (peak Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

SLATE Update: Making Math Libraries Exascale-ready

August 9, 2018

Practically-speaking, achieving exascale computing requires enabling HPC software to effectively use accelerators – mostly GPUs at present – and that remain Read more…

By John Russell

Summertime in Washington: Some Unexpected Advanced Computing News

August 8, 2018

Summertime in Washington DC is known for its heat and humidity. That is why most people get away to either the mountains or the seashore and things slow down. H Read more…

By Alex R. Larzelere

NSF Invests $15 Million in Quantum STAQ

August 7, 2018

Quantum computing development is in full ascent as global backers aim to transcend the limitations of classical computing by leveraging the magical-seeming prop Read more…

By Tiffany Trader

By the Numbers: Cray Would Like Exascale to Be the Icing on the Cake

August 1, 2018

On its earnings call held for investors yesterday, Cray gave an accounting for its latest quarterly financials, offered future guidance and provided an update o Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17


AMD @ SC17


ASRock Rack @ SC17

ASRock Rack



DDN Storage @ SC17

DDN Storage

Huawei @ SC17


IBM @ SC17


IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17


Lenovo @ SC17


Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17


Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17


Tyan @ SC17


Univa @ SC17


  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This