NVIDIA Opens Up CUDA Compiler

By Michael Feldman

December 13, 2011

GPU maker NVIDIA is going to make its CUDA compiler runtime source code, and internal representation format public, opening up the technology for different programming languages and processor architectures. The announcement was made on Wednesday at the kick-off of the GPU Technology Conference Asia in Beijing, China.

The company says it will use the LLVM compiler infrastructure as the vehicle for the public CUDA source code. LLVM is a open source project that maintains source code collections of various of compile, runtimes, and other development tools. The new LLVM-based CUDA source, will be available in the latest release of the CUDA Toolkit, version 4.1, which was also launched this week.

The CUDA open source set-up does not, however, mean NVIDIA will arbitrarily accept changes and enhancements to its compiler technology from other developers. The company still intends to retain complete control of its source code.  Tool developers will be able to modify the standard compiler and runtime for their own customized needs, but little of this is likely to be folded back into NVIDIA’s code base

The main idea is to allow software tool makers to port the CUDA compiler to other environments that NVIDIA or its commercial partners are not interested in pursuing on their own. In the case of programming languages, there are already compilers for C, C++, and Fortran, which are the big three for high performance computing. But as the market for GPU computing expands, NVIDIA foresees the need for other languages such as Python or Java, as well as domain specific languages.

As far as CUDA compiler targets, there is a lot of room for interesting ports to other platforms. The prime candidate here is the AMD/ATI GPU platform. Even though CUDA is the most widespread programming environment for GPU computing, it only currently works on NVIDIA GPUs (and x86 multicore via a PGI compiler implementation). There are likely to be plenty of users with CUDA-based applications that are now interested in running their applications on AMD GPUs/APUs, or at least are interested in the prospect that their codes can do so at some future date.

AMD is still pushing its OpenCL strategy for GPU computing. OpenCL, a non-vendor-specific open standard for parallel computing, is supported by NVIDIA as well, but has not yet managed to attract a lot applications. By offering to open up CUDA, NVIDIA has probably blunted some of the appeal of OpenCL, that is, assuming a compiler vendor or an academic research group builds an CUDA-ized AMD GPU compiler.

Since CUDA is a general-purpose parallel computing technology, essentially any multicore/manycore architecture would be a potential target. Other possible architectures for CUDA include Intel’s upcoming Many Integrated Core (MIC) coprocessor, Power CPUs, multicore ARM chips (especially for future 64-bit implementations), and even more exotic fare, like Texas Instruments’ new floating-point capable DSPs.

The academic community most likely to take early advantage of an open CUDA compiler.  For example, at Georgia Tech, the Ocelot project is focused on applying CUDA C to different processors, including AMD GPUs and x86-CPUs. The project lead there, Sudhakar Yalamanchili, says the opening up of the CUDA technology is “a significant step.”
 
Even compiler vendors who already have special arrangements with NVIDIA will be able to take advantage of the new open source strategy. In the press release, The Portland Group (PGI) director Doug Miles says “This initiative enables PGI to create native CUDA Fortran and OpenACC compilers that leverage the same device-level optimization technology used by NVIDIA CUDA C/C++. It will enable seamless debugging and profiling using existing tools, and allow PGI to focus on higher-level optimizations and language features.”

NVIDIA will not always directly benefit from its new open source stance. Certainly, if some enterprising team ports CUDA to AMD chips, that could cut into Tesla GPU sales. But for the greater good of attracting customers to its own hardware, NVIDIA realized that a closed platform discourages plenty of users who don’t want to be locked into a single hardware platform or rely on a sole vendor. As with NVIDIA’s recent endorsement of the OpenACC directives, the opening of CUDA  seems to be part of a strategy designed to broaden the appeal of GPU computing rather than just NVIDIA products. It appears the GPU maker has calculated that expanding the pie will get them further in the long run than just trying to maximize their slice of it.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and received a patent for a "processor design, which allows rep Read more…

By Tiffany Trader

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitive computing, memory-centric computing, high-speed communicat Read more…

By John Russell

US Seeks to Automate Video Analysis

January 16, 2018

U.S. military and intelligence agencies continue to look for new ways to use artificial intelligence to sift through huge amounts of video imagery in hopes of freeing analysts to identify threats and otherwise put their Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

URISC@SC17 and the #LongestLastMile

January 11, 2018

A multinational delegation recently attended the Understanding Risk in Shared CyberEcosystems workshop, or URISC@SC17, in Denver, Colorado. URISC participants and presenters from 11 countries, including eight African nations, 12 U.S. states, Canada, India and Nepal, also attended SC17, the annual international conference for high performance computing, networking, storage and analysis that drew nearly 13,000 attendees. Read more…

By Elizabeth Leake, STEM-Trek Nonprofit

SRC Spends $200M on University Research Centers

January 16, 2018

The Semiconductor Research Corporation, as part of its JUMP initiative, has awarded $200 million to fund six research centers whose areas of focus span cognitiv Read more…

By John Russell

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

The @hpcnotes Predictions for HPC in 2018

January 4, 2018

I’m not averse to making predictions about the world of High Performance Computing (and Supercomputing, Cloud, etc.) in person at conferences, meetings, causa Read more…

By Andrew Jones

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Nvidia, Partners Announce Several V100 Servers

September 27, 2017

Here come the Volta 100-based servers. Nvidia today announced an impressive line-up of servers from major partners – Dell EMC, Hewlett Packard Enterprise, IBM Read more…

By John Russell

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

  • arrow
  • Click Here for More Headlines
  • arrow
Share This