Ten Ways to Fool the Masses When Giving Performance Results on GPUs

By Scott Pakin

December 13, 2011

The performance potential of GPU computing has produced significant excitement in the HPC community. However, as was the case with the advent of parallel computing decades ago, the nascent technology does not equally benefit all applications — or even all components of a single application. Alas, modest speedups from GPU acceleration are rarely publication-worthy, a fact that occasionally leads GPU zealots to adopt scientifically dubious techniques to artificially inflate the performance benefit of GPU computing to more impressive levels.

In this modern revival of David Bailey’s classic report, “Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers,” I present ten forms of experimental sloppiness I’ve encountered repeatedly in scientific publications, all of which can be used to chicane GPU rookies (and pointy-haired bosses) into believing that GPUs can magically improve any application’s performance by multiple orders of magnitude. With this list as their vade mecum, readers will learn to be skeptical of exaggerated GPU performance claims.

Ready to boost your reported GPU performance results without boosting your actual GPU performance? Read on…

1. Quote performance results only with 32-bit floating-point arithmetic, not 64-bit arithmetic.

GPUs get double the performance when using single-precision arithmetic. Who needs more than eight decimal digits of precision, anyway? It goes without saying that the CPU version of the code you compare against should use exclusively 64-bit arithmetic because, well, that’s how people write CPU code (even though CPUs also double their flop rate when utilizing 32-bit SIMD arithmetic).

2. Don’t time data movement or kernel-invocation overhead.

Copying data between CPU memory and GPU memory is slow and cuts into the amount of GPU performance that one can claim. Hence, to make GPUs look good, be sure to start the clock after all of the program’s data have already been transferred to GPU memory and the kernel has already been launched and stop the clock before the results are copied back to CPU memory. There are two corollaries to this rule:

Corollary 1: Never, ever report the performance of an application running across more than one GPU-accelerated node. Doing so requires all sorts of CPU-managed communication, and *that* requires data movement and additional kernel invocations — bad for speedup numbers.

Corollary 2: Always report performance of single kernels, not of complete applications. This is especially true of applications containing important but hard-to-accelerate subroutines.

3. Quote GPU cost and ubiquity for low-end parts. Measure performance on high-end parts.

Here’s some text you can adapt as necessary: “GPUs are an important platform to target because they cost under $100 and come standard with all modern computer systems. For our experiments we measured performance on an NVIDIA Tesla M2090…”

4. Quote memory bandwidth only to/from on-board GPU memory, not to/from main memory.

Impress your audience with your high-end GPU’s ability to do memory transfers at 177 GB/s. As long as you never need to store, transfer, or utilize the result of your computations, that’s a perfectly honest number to quote.

5. Disable ECC checks on memory.

GPUs run faster — and provide more usable memory capacity — when they don’t have to try so hard to produce correct data. Besides, what GPU kernel runs long enough that this should be an issue?

6. Compare full (or even multiple) GPU performance to a single CPU core.

Always compare what you started with (a sequential CPU program) with what you ended up producing (a parallel GPU program). A 10x speedup of GPU code over CPU code sure seems a lot more impressive when you neglect to mention that your host system contains two sockets of eight-core CPUs, which you *could* have used instead.

7. Compare heavily optimized GPU code to unoptimized CPU code.

Naturally, you’ve made sure the GPU code runs as fast as possible by restructuring it to exploit data parallelism, memory locality, and other GPU-friendly program characteristics. Now be sure to compare it only against the original, naive CPU code, not a version that exploits the CPU’s SIMD instructions, properly blocks for cache, optimally aligns data structures, or includes any of the other performance optimizations that CPU programmers rarely bother with. Definitely don’t backport your GPU modifications to the CPU, or the reported speedup will be disappointingly less.

8. Scale the problem size to fit within GPU memory.

This recommendation goes both ways. If your GPU has 6 GB of on-board memory and your application’s problem size is larger than that, then scale it down to 6 GB so you can avoid all the expensive synchronization and messy double-buffering that large problem sizes entail. If your GPU has 6 GB of on-board memory and your application’s problem size is significantly smaller than that, then weak-scale the problem size, even beyond meaningful bounds, so you can reap the performance benefits of increased data parallelism. The following recommendation further develops this point:

9. Sacrifice meaningful numerics for GPU performance.

GPUs are renowned for their computational throughput. However, reaching peak performance requires amortizing that nasty startup cost of moving kernels and data to the GPU. Hence, to demonstrate good GPU performance, always run far more iterations than are typical, necessary, practical, or even meaningful for real-world usage, numerics be damned!

10. Select algorithms that favor GPUs.

The best CPU algorithms often don’t make the best GPU algorithms and vice versa. Consequently, you should always take whatever algorithm works best on the GPU and benchmark that against a CPU version. What’s great about this approach over comparing the performance of the best CPU algorithm to that of the best GPU algorithm is that it leads to a “fair” comparison. After all, you ran the same algorithm on both systems — fair, right?

Parting thoughts

The good news is that advances in GPU technology are alleviating some of the costs that the preceding trickery attempts to hide. While parts of my list may soon appear anachronistic, there should still be enough deviousness remaining to please even the most discerning GPU fanboy.

As a final, largely unrelated comment, can we please eliminate the oxymoronic noun “GPGPU” from our collective lexicon? If a processor is specialized for graphics processing, then it’s not really a general-purpose device, is it?

Further reading

[Bai91] David H. Bailey. “Highly parallel perspective: Twelve ways to fool the masses when giving performance results on parallel computers”. Supercomputing Review, 4(8):54-55, August, 1991. ISSN: 1048-6836. Also appears as NASA Ames RNR Technical Report RNR-91-020.

[BBR10] Rajesh Bordawekar, Uday Bondhugula, and Ravi Rao. “Can CPUs match GPUs on performance with productivity?: Experiences with optimizing a FLOP-intensive application on CPUs and GPU”. IBM T. J. Watson Research Center Technical Report RC25033 (W1008-020). August 5, 2010.

[LKC+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. “Debunking the 100X GPU vs. CPU myth: An evaluation of throughput computing on CPU and GPU”, Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA 2010), Saint-Malo, France, June 19-23, 2010. ISBN: 978-1-4503-0053-7, DOI: 10.1145/1815961.1816021.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Career Notes: August 2021 Edition

August 4, 2021

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high-performance computing community. Whether it’s a promotion, new company hire, or even an accolade, we’ Read more…

The Promise (and Necessity) of Runtime Systems like Charm++ in Exascale Power Management

August 4, 2021

Big heterogeneous computer systems, especially forthcoming exascale computers, are power hungry and difficult to program effectively. This is, of course, not an unrecognized problem. In a recent blog, Charmworks’ CEO S Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its HPC cloud capabilities. Nimbix will become “an Atos HPC c Read more…

Berkeley Lab Makes Strides in Autonomous Discovery to Tackle the Data Deluge

August 2, 2021

Data production is outpacing the human capacity to process said data. Whether a giant radio telescope, a new particle accelerator or lidar data from autonomous cars, the sheer scale of the data generated is increasingly Read more…

Verifying the Universe with Exascale Computers

July 30, 2021

The ExaSky project, one of the critical Earth and Space Science applications being solved by the US Department of Energy’s (DOE’s) Exascale Computing Project (ECP), is preparing to use the nation’s forthcoming exas Read more…

AWS Solution Channel

Pushing pixels, not data with NICE DCV

NICE DCV, our high-performance, low-latency remote-display protocol, was originally created for scientists and engineers who ran large workloads on far-away supercomputers, but needed to visualize data without moving it. Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

Digging into the Atos-Nimbix Deal: Big US HPC and Global Cloud Aspirations. Look out HPE?

August 2, 2021

Behind Atos’s deal announced last week to acquire HPC-cloud specialist Nimbix are ramped-up plans to penetrate the U.S. HPC market and global expansion of its Read more…

What’s After Exascale? The Internet of Workflows Says HPE’s Nicolas Dubé

July 29, 2021

With the race to exascale computing in its final leg, it’s natural to wonder what the Post Exascale Era will look like. Nicolas Dubé, VP and chief technologist for HPE’s HPC business unit, agrees and shared his vision at Supercomputing Frontiers Europe 2021 held last week. The next big thing, he told the virtual audience at SFE21, is something that will connect HPC and (broadly) all of IT – into what Dubé calls The Internet of Workflows. Read more…

How UK Scientists Developed Transformative, HPC-Powered Coronavirus Sequencing System

July 29, 2021

In November 2020, the COVID-19 Genomics UK Consortium (COG-UK) won the HPCwire Readers’ Choice Award for Best HPC Collaboration for its CLIMB-COVID sequencing project. Launched in March 2020, CLIMB-COVID has now resulted in the sequencing of over 675,000 coronavirus genomes – an increasingly critical task as variants like Delta threaten the tenuous prospect of a return to normalcy in much of the world. Read more…

IBM and University of Tokyo Roll Out Quantum System One in Japan

July 27, 2021

IBM and the University of Tokyo today unveiled an IBM Quantum System One as part of the IBM-Japan quantum program announced in 2019. The system is the second IB Read more…

Intel Unveils New Node Names; Sapphire Rapids Is Now an ‘Intel 7’ CPU

July 27, 2021

What's a preeminent chip company to do when its process node technology lags the competition by (roughly) one generation, but outmoded naming conventions make it seem like it's two nodes behind? For Intel, the response was to change how it refers to its nodes with the aim of better reflecting its positioning within the leadership semiconductor manufacturing space. Intel revealed its new node nomenclature, and... Read more…

Will Approximation Drive Post-Moore’s Law HPC Gains?

July 26, 2021

“Hardware-based improvements are going to get more and more difficult,” said Neil Thompson, an innovation scholar at MIT’s Computer Science and Artificial Intelligence Lab (CSAIL). “I think that’s something that this crowd will probably, actually, be already familiar with.” Thompson, speaking... Read more…

With New Owner and New Roadmap, an Independent Omni-Path Is Staging a Comeback

July 23, 2021

Put on a shelf by Intel in 2019, Omni-Path faced a uncertain future, but under new custodian Cornelis Networks, OmniPath is looking to make a comeback as an independent high-performance interconnect solution. A "significant refresh" – called Omni-Path Express – is coming later this year according to the company. Cornelis Networks formed last September as a spinout of Intel's Omni-Path division. Read more…

Chameleon’s HPC Testbed Sharpens Its Edge, Presses ‘Replay’

July 22, 2021

“One way of saying what I do for a living is to say that I develop scientific instruments,” said Kate Keahey, a senior fellow at the University of Chicago a Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Berkeley Lab Debuts Perlmutter, World’s Fastest AI Supercomputer

May 27, 2021

A ribbon-cutting ceremony held virtually at Berkeley Lab's National Energy Research Scientific Computing Center (NERSC) today marked the official launch of Perlmutter – aka NERSC-9 – the GPU-accelerated supercomputer built by HPE in partnership with Nvidia and AMD. Read more…

Ahead of ‘Dojo,’ Tesla Reveals Its Massive Precursor Supercomputer

June 22, 2021

In spring 2019, Tesla made cryptic reference to a project called Dojo, a “super-powerful training computer” for video data processing. Then, in summer 2020, Tesla CEO Elon Musk tweeted: “Tesla is developing a [neural network] training computer called Dojo to process truly vast amounts of video data. It’s a beast! … A truly useful exaflop at de facto FP32.” Read more…

Google Launches TPU v4 AI Chips

May 20, 2021

Google CEO Sundar Pichai spoke for only one minute and 42 seconds about the company’s latest TPU v4 Tensor Processing Units during his keynote at the Google I Read more…

CentOS Replacement Rocky Linux Is Now in GA and Under Independent Control

June 21, 2021

The Rocky Enterprise Software Foundation (RESF) is announcing the general availability of Rocky Linux, release 8.4, designed as a drop-in replacement for the soon-to-be discontinued CentOS. The GA release is launching six-and-a-half months after Red Hat deprecated its support for the widely popular, free CentOS server operating system. The Rocky Linux development effort... Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Iran Gains HPC Capabilities with Launch of ‘Simorgh’ Supercomputer

May 18, 2021

Iran is said to be developing domestic supercomputing technology to advance the processing of scientific, economic, political and military data, and to strengthen the nation’s position in the age of AI and big data. On Sunday, Iran unveiled the Simorgh supercomputer, which will deliver.... Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Leading Solution Providers

Contributors

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

AMD-Xilinx Deal Gains UK, EU Approvals — China’s Decision Still Pending

July 1, 2021

AMD’s planned acquisition of FPGA maker Xilinx is now in the hands of Chinese regulators after needed antitrust approvals for the $35 billion deal were receiv Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

Quantum Roundup: IBM, Rigetti, Phasecraft, Oxford QC, China, and More

July 13, 2021

IBM yesterday announced a proof for a quantum ML algorithm. A week ago, it unveiled a new topology for its quantum processors. Last Friday, the Technical Univer Read more…

Q&A with Jim Keller, CTO of Tenstorrent, and an HPCwire Person to Watch in 2021

April 22, 2021

As part of our HPCwire Person to Watch series, we are happy to present our interview with Jim Keller, president and chief technology officer of Tenstorrent. One of the top chip architects of our time, Keller has had an impactful career. Read more…

Frontier to Meet 20MW Exascale Power Target Set by DARPA in 2008

July 14, 2021

After more than a decade of planning, the United States’ first exascale computer, Frontier, is set to arrive at Oak Ridge National Laboratory (ORNL) later this year. Crossing this “1,000x” horizon required overcoming four major challenges: power demand, reliability, extreme parallelism and data movement. Read more…

Senate Debate on Bill to Remake NSF – the Endless Frontier Act – Begins

May 18, 2021

The U.S. Senate today opened floor debate on the Endless Frontier Act which seeks to remake and expand the National Science Foundation by creating a technology Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire