Ten Ways to Fool the Masses When Giving Performance Results on GPUs

By Scott Pakin

December 13, 2011

The performance potential of GPU computing has produced significant excitement in the HPC community. However, as was the case with the advent of parallel computing decades ago, the nascent technology does not equally benefit all applications — or even all components of a single application. Alas, modest speedups from GPU acceleration are rarely publication-worthy, a fact that occasionally leads GPU zealots to adopt scientifically dubious techniques to artificially inflate the performance benefit of GPU computing to more impressive levels.

In this modern revival of David Bailey’s classic report, “Twelve Ways to Fool the Masses When Giving Performance Results on Parallel Computers,” I present ten forms of experimental sloppiness I’ve encountered repeatedly in scientific publications, all of which can be used to chicane GPU rookies (and pointy-haired bosses) into believing that GPUs can magically improve any application’s performance by multiple orders of magnitude. With this list as their vade mecum, readers will learn to be skeptical of exaggerated GPU performance claims.

Ready to boost your reported GPU performance results without boosting your actual GPU performance? Read on…

1. Quote performance results only with 32-bit floating-point arithmetic, not 64-bit arithmetic.

GPUs get double the performance when using single-precision arithmetic. Who needs more than eight decimal digits of precision, anyway? It goes without saying that the CPU version of the code you compare against should use exclusively 64-bit arithmetic because, well, that’s how people write CPU code (even though CPUs also double their flop rate when utilizing 32-bit SIMD arithmetic).

2. Don’t time data movement or kernel-invocation overhead.

Copying data between CPU memory and GPU memory is slow and cuts into the amount of GPU performance that one can claim. Hence, to make GPUs look good, be sure to start the clock after all of the program’s data have already been transferred to GPU memory and the kernel has already been launched and stop the clock before the results are copied back to CPU memory. There are two corollaries to this rule:

Corollary 1: Never, ever report the performance of an application running across more than one GPU-accelerated node. Doing so requires all sorts of CPU-managed communication, and *that* requires data movement and additional kernel invocations — bad for speedup numbers.

Corollary 2: Always report performance of single kernels, not of complete applications. This is especially true of applications containing important but hard-to-accelerate subroutines.

3. Quote GPU cost and ubiquity for low-end parts. Measure performance on high-end parts.

Here’s some text you can adapt as necessary: “GPUs are an important platform to target because they cost under $100 and come standard with all modern computer systems. For our experiments we measured performance on an NVIDIA Tesla M2090…”

4. Quote memory bandwidth only to/from on-board GPU memory, not to/from main memory.

Impress your audience with your high-end GPU’s ability to do memory transfers at 177 GB/s. As long as you never need to store, transfer, or utilize the result of your computations, that’s a perfectly honest number to quote.

5. Disable ECC checks on memory.

GPUs run faster — and provide more usable memory capacity — when they don’t have to try so hard to produce correct data. Besides, what GPU kernel runs long enough that this should be an issue?

6. Compare full (or even multiple) GPU performance to a single CPU core.

Always compare what you started with (a sequential CPU program) with what you ended up producing (a parallel GPU program). A 10x speedup of GPU code over CPU code sure seems a lot more impressive when you neglect to mention that your host system contains two sockets of eight-core CPUs, which you *could* have used instead.

7. Compare heavily optimized GPU code to unoptimized CPU code.

Naturally, you’ve made sure the GPU code runs as fast as possible by restructuring it to exploit data parallelism, memory locality, and other GPU-friendly program characteristics. Now be sure to compare it only against the original, naive CPU code, not a version that exploits the CPU’s SIMD instructions, properly blocks for cache, optimally aligns data structures, or includes any of the other performance optimizations that CPU programmers rarely bother with. Definitely don’t backport your GPU modifications to the CPU, or the reported speedup will be disappointingly less.

8. Scale the problem size to fit within GPU memory.

This recommendation goes both ways. If your GPU has 6 GB of on-board memory and your application’s problem size is larger than that, then scale it down to 6 GB so you can avoid all the expensive synchronization and messy double-buffering that large problem sizes entail. If your GPU has 6 GB of on-board memory and your application’s problem size is significantly smaller than that, then weak-scale the problem size, even beyond meaningful bounds, so you can reap the performance benefits of increased data parallelism. The following recommendation further develops this point:

9. Sacrifice meaningful numerics for GPU performance.

GPUs are renowned for their computational throughput. However, reaching peak performance requires amortizing that nasty startup cost of moving kernels and data to the GPU. Hence, to demonstrate good GPU performance, always run far more iterations than are typical, necessary, practical, or even meaningful for real-world usage, numerics be damned!

10. Select algorithms that favor GPUs.

The best CPU algorithms often don’t make the best GPU algorithms and vice versa. Consequently, you should always take whatever algorithm works best on the GPU and benchmark that against a CPU version. What’s great about this approach over comparing the performance of the best CPU algorithm to that of the best GPU algorithm is that it leads to a “fair” comparison. After all, you ran the same algorithm on both systems — fair, right?

Parting thoughts

The good news is that advances in GPU technology are alleviating some of the costs that the preceding trickery attempts to hide. While parts of my list may soon appear anachronistic, there should still be enough deviousness remaining to please even the most discerning GPU fanboy.

As a final, largely unrelated comment, can we please eliminate the oxymoronic noun “GPGPU” from our collective lexicon? If a processor is specialized for graphics processing, then it’s not really a general-purpose device, is it?

Further reading

[Bai91] David H. Bailey. “Highly parallel perspective: Twelve ways to fool the masses when giving performance results on parallel computers”. Supercomputing Review, 4(8):54-55, August, 1991. ISSN: 1048-6836. Also appears as NASA Ames RNR Technical Report RNR-91-020.

[BBR10] Rajesh Bordawekar, Uday Bondhugula, and Ravi Rao. “Can CPUs match GPUs on performance with productivity?: Experiences with optimizing a FLOP-intensive application on CPUs and GPU”. IBM T. J. Watson Research Center Technical Report RC25033 (W1008-020). August 5, 2010.

[LKC+10] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and Pradeep Dubey. “Debunking the 100X GPU vs. CPU myth: An evaluation of throughput computing on CPU and GPU”, Proceedings of the 37th Annual International Symposium on Computer Architecture (ISCA 2010), Saint-Malo, France, June 19-23, 2010. ISBN: 978-1-4503-0053-7, DOI: 10.1145/1815961.1816021.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This