BGI Speeds Genome Analysis with GPUs

By Michael Feldman

December 15, 2011

The data deluge in the life sciences is no where more acute than at Chinese genomics powerhouse BGI, which probably sequences more DNA than any other organization in the world. To turn that data into something meaningful for genomic researchers, the institute has begun to employ GPU-accelerated HPC to greatly reduce processing times. In doing so, BGI was able to increase computational throughput by an order of magnitude or more.

At the GPU Technology Conference in Beijing this week, Dr. BingQiang Wang, who heads the HPC group at BGI, described the daunting task of keeping the computational analysis in line with the rapid accumulation of genomic data. At BGI, he says, they are currently able to sequence 6 trillion base pairs per day and have a stored database totaling 20 PB.

The data deluge problem stems from an imbalance between the DNA sequencing technology and computer technology. According to Dr. Wang, using second-generation sequencing machines, genomes can now be mapped 50,000 times faster than just a decade ago. The technology on track to increase approximately 10-fold every 18 months. That is 5 times the rate of Moore’s Law, and therein lies the problem.

Obviously it would be impractical to upgrade one’s computational infrastructure at that rate, so BGI has turned to NVIDIA GPUs to accelerate the analytics end of the workflow. The architecture of the GPU is particularly suitable for DNA data crunching, thanks to its many simple cores and its high memory bandwidth. Encouraged by the speedup results from similar types of data-parallel programs, BGI developed three genome analysis applications (SOAP3, GSNP, and GAMA) to take advantage of the manycore processing power of the graphics processor.

Developed in 2011, SOAP3 is a GPU-enabled short oligonucleotide alignment program, which aligns short reads against a reference DNA sequence. Thanks to GPU acceleration and some additional memory capacity on the CPU side, SOAP3 is 10 to 30 times faster than its CPU-only predecessor, SOAP2. Running SOAP3 on a Xeon cluster using NVIDIA’s Tesla C2070 module, BGI was able to increase performance by 10X for a human genome — 16X if you discount data loading times from the CPU to the GPU.

The SNP detection tool, GSNP, is GPU-enabled version of SOAPsnp, which find differences of a single nucleotide polymorphism (SNP) in the DNA. SNPs represent genetic variations that can be associated with traits such as disease resistance and drug response. Using GSNP, BGI was able to reduce processing times by about 7X on a typical run — from 4 days to 14 hours.

GAMA is another genetic variation code, used to estimate the frequencies of gene variants. To compute the frequencies of 1,000 individuals, the original version of GAMA could take a year or more. The GPU-accelerated version could do the same in just two days.

Using GPU-accelerated tools, BGI has been able to reduce the computational part of their standard workflow from about 11 days to 23 hours. But data manipulation times for the storage only decreased at a more modest 50 percent. As a result the data manipulation component of the workflow went from 8 percent of the total time to 25 percent.

The solution was data compression, which was accomplished inside the GPU. BGI implements a Hoffman-based compression algorithm that delivers a compression ration of around 24 percent. The compression rate is a respectable 1 GB/second, with decompression at 1.5 GB/second.

Most of the work described here was done on a BGI-owned 20-GPU server cluster, employing NVIDIA Tesla parts. According to Wang, they have two such clusters, one at their main facility in Shenzhen and another at their Hong Kong office. Storage is provided by Isilon and is made up of multiple systems to house their 20 PB (and growing) database.

Although the workhorse HPC clusters are used for the majority of the BGI analysis tools, more challenging genomics requires a great deal more processing power that a 20-GPU machine. For example, BGI has an application that estimates minor allele frequency (MAF) across a population. MAF refers to the frequency at which the less common alleles occurs in a given population. It’s useful for studying genetic variations on a geographical scale.

To estimate the MAF results for even a modest size population is very computationally expensive. For example, using just 1,024 human genomes, it would take 10 years on a single CPU and 0.5 years on a single GPU to generate the MAF results. To make such an application run feasible, one would need thousands or CPUs or hundreds of GPUs.

To achieve an MAF population estimation, BGI teamed up with the Tianjin Supercomputing Center to use their GPU-equipped Tianhe-1A, the top supercomputer in China, and the second most powerful system in the world. Using 256 of the machine’s 7,168 GPUs, and employing MPI to communicate between the nodes, the MAF run for that 1,024 population took just 13 hours.

To date, all of GPU porting effort for the analytics applications has been done under CUDA, requiring some serious development effort on the part of the BGI team. Dr. Wang would like to make the development effort more productive, and is intrigued by the recently announced OpenACC programming model, which would allow developers to insert OpenMP-like directives into non-CUDA serial code to expose the parallelism.

Dr. Wang says the GPU application coding has necessitated both computer engineers with GPU expertise as well as biologists who have an intimate knowledge of the genomics application domain. To develop these kinds of applications, the scientists have to work in tandem. Ideally, a developer would encompass both areas of expertise, says Wang. But, he adds, “there is no such person.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

SC17 US Student Cluster Competition Teams: Defending the Home Turf

November 24, 2017

Nine US universities showed up to the SC17 Student Cluster Competition in an attempt to keep the trophies in the United States. Let’s use our video lens to get to know them a bit better…. Georgia Tech is a newbie Read more…

By Dan Olds

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em, and grill ‘em about their clusters and how they’re doi Read more…

By Dan Olds

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open question. The latest geo-region to throw its hat in the quantum co Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Wins “Best HPC Server” for the Apollo 6000 Gen10 System

Hewlett Packard Enterprise (HPE) was nominated for 14 HPCwire Readers’ and Editors’ Choice Awards—including “Best High Performance Computing (HPC) Server Product or Technology” and “Top Supercomputing Achievement.” The HPE Apollo 6000 Gen10 was named “Best HPC Server” of 2017. Read more…

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshop Read more…

By Andrew Jones

SC17 US Student Cluster Competition Teams: Defending the Home Turf

November 24, 2017

Nine US universities showed up to the SC17 Student Cluster Competition in an attempt to keep the trophies in the United States. Let’s use our video lens to ge Read more…

By Dan Olds

Long Flights to Cluster Fights: Meet the Asian Student Cluster Teams

November 22, 2017

Five teams from Asia traveled thousands of miles to compete at the SC17 Student Cluster Competition in Denver. Our cameras were there to meet ‘em, greet ‘em Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC Read more…

By Andrew Jones

SC Bids Farewell to Denver, Heads to Dallas for 30th Anniversary

November 17, 2017

After a jam-packed four-day expo and intensive six-day technical program, SC17 has wrapped up another successful event that brought together nearly 13,000 visit Read more…

By Tiffany Trader

SC17 Keynote – HPC Powers SKA Efforts to Peer Deep into the Cosmos

November 17, 2017

This week’s SC17 keynote – Life, the Universe and Computing: The Story of the SKA Telescope – was a powerful pitch for the potential of Big Science projects that also showcased the foundational role of high performance computing in modern science. It was also visually stunning. Read more…

By John Russell

How Cities Use HPC at the Edge to Get Smarter

November 17, 2017

Cities are sensoring up, collecting vast troves of data that they’re running through predictive models and using the insights to solve problems that, in some Read more…

By Doug Black

Student Cluster LINPACK Record Shattered! More LINs Packed Than Ever before!

November 16, 2017

Nanyang Technological University, the pride of Singapore, utterly destroyed the Student Cluster Competition LINPACK record by posting a score of 51.77 TFlop/s a Read more…

By Dan Olds

Hyperion Market Update: ‘Decent’ Growth Led by HPE; AI Transparency a Risk Issue

November 15, 2017

The HPC market update from Hyperion Research (formerly IDC) at the annual SC conference is a business and social “must,” and this year’s presentation at S Read more…

By Doug Black

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Share This