BGI Speeds Genome Analysis with GPUs

By Michael Feldman

December 15, 2011

The data deluge in the life sciences is no where more acute than at Chinese genomics powerhouse BGI, which probably sequences more DNA than any other organization in the world. To turn that data into something meaningful for genomic researchers, the institute has begun to employ GPU-accelerated HPC to greatly reduce processing times. In doing so, BGI was able to increase computational throughput by an order of magnitude or more.

At the GPU Technology Conference in Beijing this week, Dr. BingQiang Wang, who heads the HPC group at BGI, described the daunting task of keeping the computational analysis in line with the rapid accumulation of genomic data. At BGI, he says, they are currently able to sequence 6 trillion base pairs per day and have a stored database totaling 20 PB.

The data deluge problem stems from an imbalance between the DNA sequencing technology and computer technology. According to Dr. Wang, using second-generation sequencing machines, genomes can now be mapped 50,000 times faster than just a decade ago. The technology on track to increase approximately 10-fold every 18 months. That is 5 times the rate of Moore’s Law, and therein lies the problem.

Obviously it would be impractical to upgrade one’s computational infrastructure at that rate, so BGI has turned to NVIDIA GPUs to accelerate the analytics end of the workflow. The architecture of the GPU is particularly suitable for DNA data crunching, thanks to its many simple cores and its high memory bandwidth. Encouraged by the speedup results from similar types of data-parallel programs, BGI developed three genome analysis applications (SOAP3, GSNP, and GAMA) to take advantage of the manycore processing power of the graphics processor.

Developed in 2011, SOAP3 is a GPU-enabled short oligonucleotide alignment program, which aligns short reads against a reference DNA sequence. Thanks to GPU acceleration and some additional memory capacity on the CPU side, SOAP3 is 10 to 30 times faster than its CPU-only predecessor, SOAP2. Running SOAP3 on a Xeon cluster using NVIDIA’s Tesla C2070 module, BGI was able to increase performance by 10X for a human genome — 16X if you discount data loading times from the CPU to the GPU.

The SNP detection tool, GSNP, is GPU-enabled version of SOAPsnp, which find differences of a single nucleotide polymorphism (SNP) in the DNA. SNPs represent genetic variations that can be associated with traits such as disease resistance and drug response. Using GSNP, BGI was able to reduce processing times by about 7X on a typical run — from 4 days to 14 hours.

GAMA is another genetic variation code, used to estimate the frequencies of gene variants. To compute the frequencies of 1,000 individuals, the original version of GAMA could take a year or more. The GPU-accelerated version could do the same in just two days.

Using GPU-accelerated tools, BGI has been able to reduce the computational part of their standard workflow from about 11 days to 23 hours. But data manipulation times for the storage only decreased at a more modest 50 percent. As a result the data manipulation component of the workflow went from 8 percent of the total time to 25 percent.

The solution was data compression, which was accomplished inside the GPU. BGI implements a Hoffman-based compression algorithm that delivers a compression ration of around 24 percent. The compression rate is a respectable 1 GB/second, with decompression at 1.5 GB/second.

Most of the work described here was done on a BGI-owned 20-GPU server cluster, employing NVIDIA Tesla parts. According to Wang, they have two such clusters, one at their main facility in Shenzhen and another at their Hong Kong office. Storage is provided by Isilon and is made up of multiple systems to house their 20 PB (and growing) database.

Although the workhorse HPC clusters are used for the majority of the BGI analysis tools, more challenging genomics requires a great deal more processing power that a 20-GPU machine. For example, BGI has an application that estimates minor allele frequency (MAF) across a population. MAF refers to the frequency at which the less common alleles occurs in a given population. It’s useful for studying genetic variations on a geographical scale.

To estimate the MAF results for even a modest size population is very computationally expensive. For example, using just 1,024 human genomes, it would take 10 years on a single CPU and 0.5 years on a single GPU to generate the MAF results. To make such an application run feasible, one would need thousands or CPUs or hundreds of GPUs.

To achieve an MAF population estimation, BGI teamed up with the Tianjin Supercomputing Center to use their GPU-equipped Tianhe-1A, the top supercomputer in China, and the second most powerful system in the world. Using 256 of the machine’s 7,168 GPUs, and employing MPI to communicate between the nodes, the MAF run for that 1,024 population took just 13 hours.

To date, all of GPU porting effort for the analytics applications has been done under CUDA, requiring some serious development effort on the part of the BGI team. Dr. Wang would like to make the development effort more productive, and is intrigued by the recently announced OpenACC programming model, which would allow developers to insert OpenMP-like directives into non-CUDA serial code to expose the parallelism.

Dr. Wang says the GPU application coding has necessitated both computer engineers with GPU expertise as well as biologists who have an intimate knowledge of the genomics application domain. To develop these kinds of applications, the scientists have to work in tandem. Ideally, a developer would encompass both areas of expertise, says Wang. But, he adds, “there is no such person.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Q&A with Altair CEO James Scapa, an HPCwire Person to Watch in 2021

May 14, 2021

Chairman, CEO and co-founder of Altair James R. Scapa closed several acquisitions for the company in 2020, including the purchase and integration of Univa and Ellexus. Scapa founded Altair more than 35 years ago with two Read more…

HLRS HPC Helps to Model Muscle Movements

May 13, 2021

The growing scale of HPC is allowing simulation of more and more complex systems at greater detail than ever before, particularly in the biological research spheres. Now, researchers at the University of Stuttgart are le Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst firm Hyperion Research at the HPC User Forum being held this we Read more…

AWS Solution Channel

Numerical weather prediction on AWS Graviton2

The Weather Research and Forecasting (WRF) model is a numerical weather prediction (NWP) system designed to serve both atmospheric research and operational forecasting needs. Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although the HPC server market had been facing a 6.7 percent COVID-re Read more…

Behind the Met Office’s Procurement of a Billion-Dollar Microsoft System

May 13, 2021

The UK’s national weather service, the Met Office, caused shockwaves of curiosity a few weeks ago when it formally announced that its forthcoming billion-dollar supercomputer – expected to be the most powerful weather and climate-focused supercomputer in the world when it launches in 2022... Read more…

AMD, GlobalFoundries Commit to $1.6 Billion Wafer Supply Deal

May 13, 2021

AMD plans to purchase $1.6 billion worth of wafers from GlobalFoundries in the 2022 to 2024 timeframe, the chipmaker revealed today (May 13) in an SEC filing. In the face of global semiconductor shortages and record-high demand, AMD is renegotiating its Wafer Supply Agreement and bumping up capacity. Read more…

Hyperion Offers Snapshot of Quantum Computing Market

May 13, 2021

The nascent quantum computer (QC) market will grow 27 percent annually (CAGR) reaching $830 million in 2024 according to an update provided today by analyst fir Read more…

Hyperion: HPC Server Market Ekes 1 Percent Gain in 2020, Storage Poised for ‘Tipping Point’

May 12, 2021

The HPC User Forum meeting taking place virtually this week (May 11-13) kicked off with Hyperion Research’s market update, covering the 2020 period. Although Read more…

IBM Debuts Qiskit Runtime for Quantum Computing; Reports Dramatic Speed-up

May 11, 2021

In conjunction with its virtual Think event, IBM today introduced an enhanced Qiskit Runtime Software for quantum computing, which it says demonstrated 120x spe Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Fast Pass Through (Some of) the Quantum Landscape with ORNL’s Raphael Pooser

May 7, 2021

In a rather remarkable way, and despite the frequent hype, the behind-the-scenes work of developing quantum computing has dramatically accelerated in the past f Read more…

IBM Research Debuts 2nm Test Chip with 50 Billion Transistors

May 6, 2021

IBM Research today announced the successful prototyping of the world's first 2 nanometer chip, fabricated with silicon nanosheet technology on a standard 300mm Read more…

AMD Chipmaker TSMC to Use AMD Chips for Chipmaking

May 8, 2021

TSMC has tapped AMD to support its major manufacturing and R&D workloads. AMD will provide its Epyc Rome 7702P CPUs – with 64 cores operating at a base cl Read more…

Intel Launches 10nm ‘Ice Lake’ Datacenter CPU with Up to 40 Cores

April 6, 2021

The wait is over. Today Intel officially launched its 10nm datacenter CPU, the third-generation Intel Xeon Scalable processor, codenamed Ice Lake. With up to 40 Read more…

Julia Update: Adoption Keeps Climbing; Is It a Python Challenger?

January 13, 2021

The rapid adoption of Julia, the open source, high level programing language with roots at MIT, shows no sign of slowing according to data from Julialang.org. I Read more…

CERN Is Betting Big on Exascale

April 1, 2021

The European Organization for Nuclear Research (CERN) involves 23 countries, 15,000 researchers, billions of dollars a year, and the biggest machine in the worl Read more…

HPE Launches Storage Line Loaded with IBM’s Spectrum Scale File System

April 6, 2021

HPE today launched a new family of storage solutions bundled with IBM’s Spectrum Scale Erasure Code Edition parallel file system (description below) and featu Read more…

10nm, 7nm, 5nm…. Should the Chip Nanometer Metric Be Replaced?

June 1, 2020

The biggest cool factor in server chips is the nanometer. AMD beating Intel to a CPU built on a 7nm process node* – with 5nm and 3nm on the way – has been i Read more…

Saudi Aramco Unveils Dammam 7, Its New Top Ten Supercomputer

January 21, 2021

By revenue, oil and gas giant Saudi Aramco is one of the largest companies in the world, and it has historically employed commensurate amounts of supercomputing Read more…

Quantum Computer Start-up IonQ Plans IPO via SPAC

March 8, 2021

IonQ, a Maryland-based quantum computing start-up working with ion trap technology, plans to go public via a Special Purpose Acquisition Company (SPAC) merger a Read more…

Leading Solution Providers

Contributors

AMD Launches Epyc ‘Milan’ with 19 SKUs for HPC, Enterprise and Hyperscale

March 15, 2021

At a virtual launch event held today (Monday), AMD revealed its third-generation Epyc “Milan” CPU lineup: a set of 19 SKUs -- including the flagship 64-core, 280-watt 7763 part --  aimed at HPC, enterprise and cloud workloads. Notably, the third-gen Epyc Milan chips achieve 19 percent... Read more…

Can Deep Learning Replace Numerical Weather Prediction?

March 3, 2021

Numerical weather prediction (NWP) is a mainstay of supercomputing. Some of the first applications of the first supercomputers dealt with climate modeling, and Read more…

Livermore’s El Capitan Supercomputer to Debut HPE ‘Rabbit’ Near Node Local Storage

February 18, 2021

A near node local storage innovation called Rabbit factored heavily into Lawrence Livermore National Laboratory’s decision to select Cray’s proposal for its CORAL-2 machine, the lab’s first exascale-class supercomputer, El Capitan. Details of this new storage technology were revealed... Read more…

African Supercomputing Center Inaugurates ‘Toubkal,’ Most Powerful Supercomputer on the Continent

February 25, 2021

Historically, Africa hasn’t exactly been synonymous with supercomputing. There are only a handful of supercomputers on the continent, with few ranking on the Read more…

GTC21: Nvidia Launches cuQuantum; Dips a Toe in Quantum Computing

April 13, 2021

Yesterday Nvidia officially dipped a toe into quantum computing with the launch of cuQuantum SDK, a development platform for simulating quantum circuits on GPU-accelerated systems. As Nvidia CEO Jensen Huang emphasized in his keynote, Nvidia doesn’t plan to build... Read more…

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

The History of Supercomputing vs. COVID-19

March 9, 2021

The COVID-19 pandemic poses a greater challenge to the high-performance computing community than any before. HPCwire's coverage of the supercomputing response t Read more…

Microsoft to Provide World’s Most Powerful Weather & Climate Supercomputer for UK’s Met Office

April 22, 2021

More than 14 months ago, the UK government announced plans to invest £1.2 billion ($1.56 billion) into weather and climate supercomputing, including procuremen Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire