BGI Speeds Genome Analysis with GPUs

By Michael Feldman

December 15, 2011

The data deluge in the life sciences is no where more acute than at Chinese genomics powerhouse BGI, which probably sequences more DNA than any other organization in the world. To turn that data into something meaningful for genomic researchers, the institute has begun to employ GPU-accelerated HPC to greatly reduce processing times. In doing so, BGI was able to increase computational throughput by an order of magnitude or more.

At the GPU Technology Conference in Beijing this week, Dr. BingQiang Wang, who heads the HPC group at BGI, described the daunting task of keeping the computational analysis in line with the rapid accumulation of genomic data. At BGI, he says, they are currently able to sequence 6 trillion base pairs per day and have a stored database totaling 20 PB.

The data deluge problem stems from an imbalance between the DNA sequencing technology and computer technology. According to Dr. Wang, using second-generation sequencing machines, genomes can now be mapped 50,000 times faster than just a decade ago. The technology on track to increase approximately 10-fold every 18 months. That is 5 times the rate of Moore’s Law, and therein lies the problem.

Obviously it would be impractical to upgrade one’s computational infrastructure at that rate, so BGI has turned to NVIDIA GPUs to accelerate the analytics end of the workflow. The architecture of the GPU is particularly suitable for DNA data crunching, thanks to its many simple cores and its high memory bandwidth. Encouraged by the speedup results from similar types of data-parallel programs, BGI developed three genome analysis applications (SOAP3, GSNP, and GAMA) to take advantage of the manycore processing power of the graphics processor.

Developed in 2011, SOAP3 is a GPU-enabled short oligonucleotide alignment program, which aligns short reads against a reference DNA sequence. Thanks to GPU acceleration and some additional memory capacity on the CPU side, SOAP3 is 10 to 30 times faster than its CPU-only predecessor, SOAP2. Running SOAP3 on a Xeon cluster using NVIDIA’s Tesla C2070 module, BGI was able to increase performance by 10X for a human genome — 16X if you discount data loading times from the CPU to the GPU.

The SNP detection tool, GSNP, is GPU-enabled version of SOAPsnp, which find differences of a single nucleotide polymorphism (SNP) in the DNA. SNPs represent genetic variations that can be associated with traits such as disease resistance and drug response. Using GSNP, BGI was able to reduce processing times by about 7X on a typical run — from 4 days to 14 hours.

GAMA is another genetic variation code, used to estimate the frequencies of gene variants. To compute the frequencies of 1,000 individuals, the original version of GAMA could take a year or more. The GPU-accelerated version could do the same in just two days.

Using GPU-accelerated tools, BGI has been able to reduce the computational part of their standard workflow from about 11 days to 23 hours. But data manipulation times for the storage only decreased at a more modest 50 percent. As a result the data manipulation component of the workflow went from 8 percent of the total time to 25 percent.

The solution was data compression, which was accomplished inside the GPU. BGI implements a Hoffman-based compression algorithm that delivers a compression ration of around 24 percent. The compression rate is a respectable 1 GB/second, with decompression at 1.5 GB/second.

Most of the work described here was done on a BGI-owned 20-GPU server cluster, employing NVIDIA Tesla parts. According to Wang, they have two such clusters, one at their main facility in Shenzhen and another at their Hong Kong office. Storage is provided by Isilon and is made up of multiple systems to house their 20 PB (and growing) database.

Although the workhorse HPC clusters are used for the majority of the BGI analysis tools, more challenging genomics requires a great deal more processing power that a 20-GPU machine. For example, BGI has an application that estimates minor allele frequency (MAF) across a population. MAF refers to the frequency at which the less common alleles occurs in a given population. It’s useful for studying genetic variations on a geographical scale.

To estimate the MAF results for even a modest size population is very computationally expensive. For example, using just 1,024 human genomes, it would take 10 years on a single CPU and 0.5 years on a single GPU to generate the MAF results. To make such an application run feasible, one would need thousands or CPUs or hundreds of GPUs.

To achieve an MAF population estimation, BGI teamed up with the Tianjin Supercomputing Center to use their GPU-equipped Tianhe-1A, the top supercomputer in China, and the second most powerful system in the world. Using 256 of the machine’s 7,168 GPUs, and employing MPI to communicate between the nodes, the MAF run for that 1,024 population took just 13 hours.

To date, all of GPU porting effort for the analytics applications has been done under CUDA, requiring some serious development effort on the part of the BGI team. Dr. Wang would like to make the development effort more productive, and is intrigued by the recently announced OpenACC programming model, which would allow developers to insert OpenMP-like directives into non-CUDA serial code to expose the parallelism.

Dr. Wang says the GPU application coding has necessitated both computer engineers with GPU expertise as well as biologists who have an intimate knowledge of the genomics application domain. To develop these kinds of applications, the scientists have to work in tandem. Ideally, a developer would encompass both areas of expertise, says Wang. But, he adds, “there is no such person.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This