BGI Speeds Genome Analysis with GPUs

By Michael Feldman

December 15, 2011

The data deluge in the life sciences is no where more acute than at Chinese genomics powerhouse BGI, which probably sequences more DNA than any other organization in the world. To turn that data into something meaningful for genomic researchers, the institute has begun to employ GPU-accelerated HPC to greatly reduce processing times. In doing so, BGI was able to increase computational throughput by an order of magnitude or more.

At the GPU Technology Conference in Beijing this week, Dr. BingQiang Wang, who heads the HPC group at BGI, described the daunting task of keeping the computational analysis in line with the rapid accumulation of genomic data. At BGI, he says, they are currently able to sequence 6 trillion base pairs per day and have a stored database totaling 20 PB.

The data deluge problem stems from an imbalance between the DNA sequencing technology and computer technology. According to Dr. Wang, using second-generation sequencing machines, genomes can now be mapped 50,000 times faster than just a decade ago. The technology on track to increase approximately 10-fold every 18 months. That is 5 times the rate of Moore’s Law, and therein lies the problem.

Obviously it would be impractical to upgrade one’s computational infrastructure at that rate, so BGI has turned to NVIDIA GPUs to accelerate the analytics end of the workflow. The architecture of the GPU is particularly suitable for DNA data crunching, thanks to its many simple cores and its high memory bandwidth. Encouraged by the speedup results from similar types of data-parallel programs, BGI developed three genome analysis applications (SOAP3, GSNP, and GAMA) to take advantage of the manycore processing power of the graphics processor.

Developed in 2011, SOAP3 is a GPU-enabled short oligonucleotide alignment program, which aligns short reads against a reference DNA sequence. Thanks to GPU acceleration and some additional memory capacity on the CPU side, SOAP3 is 10 to 30 times faster than its CPU-only predecessor, SOAP2. Running SOAP3 on a Xeon cluster using NVIDIA’s Tesla C2070 module, BGI was able to increase performance by 10X for a human genome — 16X if you discount data loading times from the CPU to the GPU.

The SNP detection tool, GSNP, is GPU-enabled version of SOAPsnp, which find differences of a single nucleotide polymorphism (SNP) in the DNA. SNPs represent genetic variations that can be associated with traits such as disease resistance and drug response. Using GSNP, BGI was able to reduce processing times by about 7X on a typical run — from 4 days to 14 hours.

GAMA is another genetic variation code, used to estimate the frequencies of gene variants. To compute the frequencies of 1,000 individuals, the original version of GAMA could take a year or more. The GPU-accelerated version could do the same in just two days.

Using GPU-accelerated tools, BGI has been able to reduce the computational part of their standard workflow from about 11 days to 23 hours. But data manipulation times for the storage only decreased at a more modest 50 percent. As a result the data manipulation component of the workflow went from 8 percent of the total time to 25 percent.

The solution was data compression, which was accomplished inside the GPU. BGI implements a Hoffman-based compression algorithm that delivers a compression ration of around 24 percent. The compression rate is a respectable 1 GB/second, with decompression at 1.5 GB/second.

Most of the work described here was done on a BGI-owned 20-GPU server cluster, employing NVIDIA Tesla parts. According to Wang, they have two such clusters, one at their main facility in Shenzhen and another at their Hong Kong office. Storage is provided by Isilon and is made up of multiple systems to house their 20 PB (and growing) database.

Although the workhorse HPC clusters are used for the majority of the BGI analysis tools, more challenging genomics requires a great deal more processing power that a 20-GPU machine. For example, BGI has an application that estimates minor allele frequency (MAF) across a population. MAF refers to the frequency at which the less common alleles occurs in a given population. It’s useful for studying genetic variations on a geographical scale.

To estimate the MAF results for even a modest size population is very computationally expensive. For example, using just 1,024 human genomes, it would take 10 years on a single CPU and 0.5 years on a single GPU to generate the MAF results. To make such an application run feasible, one would need thousands or CPUs or hundreds of GPUs.

To achieve an MAF population estimation, BGI teamed up with the Tianjin Supercomputing Center to use their GPU-equipped Tianhe-1A, the top supercomputer in China, and the second most powerful system in the world. Using 256 of the machine’s 7,168 GPUs, and employing MPI to communicate between the nodes, the MAF run for that 1,024 population took just 13 hours.

To date, all of GPU porting effort for the analytics applications has been done under CUDA, requiring some serious development effort on the part of the BGI team. Dr. Wang would like to make the development effort more productive, and is intrigued by the recently announced OpenACC programming model, which would allow developers to insert OpenMP-like directives into non-CUDA serial code to expose the parallelism.

Dr. Wang says the GPU application coding has necessitated both computer engineers with GPU expertise as well as biologists who have an intimate knowledge of the genomics application domain. To develop these kinds of applications, the scientists have to work in tandem. Ideally, a developer would encompass both areas of expertise, says Wang. But, he adds, “there is no such person.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This