BGI Speeds Genome Analysis with GPUs

By Michael Feldman

December 15, 2011

The data deluge in the life sciences is no where more acute than at Chinese genomics powerhouse BGI, which probably sequences more DNA than any other organization in the world. To turn that data into something meaningful for genomic researchers, the institute has begun to employ GPU-accelerated HPC to greatly reduce processing times. In doing so, BGI was able to increase computational throughput by an order of magnitude or more.

At the GPU Technology Conference in Beijing this week, Dr. BingQiang Wang, who heads the HPC group at BGI, described the daunting task of keeping the computational analysis in line with the rapid accumulation of genomic data. At BGI, he says, they are currently able to sequence 6 trillion base pairs per day and have a stored database totaling 20 PB.

The data deluge problem stems from an imbalance between the DNA sequencing technology and computer technology. According to Dr. Wang, using second-generation sequencing machines, genomes can now be mapped 50,000 times faster than just a decade ago. The technology on track to increase approximately 10-fold every 18 months. That is 5 times the rate of Moore’s Law, and therein lies the problem.

Obviously it would be impractical to upgrade one’s computational infrastructure at that rate, so BGI has turned to NVIDIA GPUs to accelerate the analytics end of the workflow. The architecture of the GPU is particularly suitable for DNA data crunching, thanks to its many simple cores and its high memory bandwidth. Encouraged by the speedup results from similar types of data-parallel programs, BGI developed three genome analysis applications (SOAP3, GSNP, and GAMA) to take advantage of the manycore processing power of the graphics processor.

Developed in 2011, SOAP3 is a GPU-enabled short oligonucleotide alignment program, which aligns short reads against a reference DNA sequence. Thanks to GPU acceleration and some additional memory capacity on the CPU side, SOAP3 is 10 to 30 times faster than its CPU-only predecessor, SOAP2. Running SOAP3 on a Xeon cluster using NVIDIA’s Tesla C2070 module, BGI was able to increase performance by 10X for a human genome — 16X if you discount data loading times from the CPU to the GPU.

The SNP detection tool, GSNP, is GPU-enabled version of SOAPsnp, which find differences of a single nucleotide polymorphism (SNP) in the DNA. SNPs represent genetic variations that can be associated with traits such as disease resistance and drug response. Using GSNP, BGI was able to reduce processing times by about 7X on a typical run — from 4 days to 14 hours.

GAMA is another genetic variation code, used to estimate the frequencies of gene variants. To compute the frequencies of 1,000 individuals, the original version of GAMA could take a year or more. The GPU-accelerated version could do the same in just two days.

Using GPU-accelerated tools, BGI has been able to reduce the computational part of their standard workflow from about 11 days to 23 hours. But data manipulation times for the storage only decreased at a more modest 50 percent. As a result the data manipulation component of the workflow went from 8 percent of the total time to 25 percent.

The solution was data compression, which was accomplished inside the GPU. BGI implements a Hoffman-based compression algorithm that delivers a compression ration of around 24 percent. The compression rate is a respectable 1 GB/second, with decompression at 1.5 GB/second.

Most of the work described here was done on a BGI-owned 20-GPU server cluster, employing NVIDIA Tesla parts. According to Wang, they have two such clusters, one at their main facility in Shenzhen and another at their Hong Kong office. Storage is provided by Isilon and is made up of multiple systems to house their 20 PB (and growing) database.

Although the workhorse HPC clusters are used for the majority of the BGI analysis tools, more challenging genomics requires a great deal more processing power that a 20-GPU machine. For example, BGI has an application that estimates minor allele frequency (MAF) across a population. MAF refers to the frequency at which the less common alleles occurs in a given population. It’s useful for studying genetic variations on a geographical scale.

To estimate the MAF results for even a modest size population is very computationally expensive. For example, using just 1,024 human genomes, it would take 10 years on a single CPU and 0.5 years on a single GPU to generate the MAF results. To make such an application run feasible, one would need thousands or CPUs or hundreds of GPUs.

To achieve an MAF population estimation, BGI teamed up with the Tianjin Supercomputing Center to use their GPU-equipped Tianhe-1A, the top supercomputer in China, and the second most powerful system in the world. Using 256 of the machine’s 7,168 GPUs, and employing MPI to communicate between the nodes, the MAF run for that 1,024 population took just 13 hours.

To date, all of GPU porting effort for the analytics applications has been done under CUDA, requiring some serious development effort on the part of the BGI team. Dr. Wang would like to make the development effort more productive, and is intrigued by the recently announced OpenACC programming model, which would allow developers to insert OpenMP-like directives into non-CUDA serial code to expose the parallelism.

Dr. Wang says the GPU application coding has necessitated both computer engineers with GPU expertise as well as biologists who have an intimate knowledge of the genomics application domain. To develop these kinds of applications, the scientists have to work in tandem. Ideally, a developer would encompass both areas of expertise, says Wang. But, he adds, “there is no such person.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Glimpses of Today’s Total Solar Eclipse

August 21, 2017

Here are a few arresting images posted by NASA of today’s total solar eclipse. Such astronomical events have always captured our imagination and it’s not hard to understand why such occurrences were often greeted wit Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This