Architecting HPC Data Storage Solutions

By Ken Claffey

December 19, 2011

Innovation has been the cornerstone of success in our heritage in the data storage industry for the last twenty-five years.   About two years ago, Xyratex initiated an investigation into additional market opportunities for enterprise class data storage solutions.  Our research yielded interesting data points that aligned with the strengths of Xyratex.  We discovered that not only was the High Performance Computing (HPC) a high growth area for storage, it also represented a dynamic market opportunity with a substantial need for better data storage design. We also learned that the way data storage was being implemented at many of these sites was unduly complicated in terms of initial installation, performance optimization and ongoing management.  

The performance requirements of HPC environments with ever-larger compute clusters have placed unprecedented demands on the I/O performance of supporting storage systems. Storage I/O has become the performance bottleneck for many HPC clusters, as traditional storage systems cannot keep pace with the increasing scale of these deployments. Clearly, a state-of-the-art, scalable HPC storage solution is required. What would a high-performance storage architecture that offers a new level of component integration and performance optimization in HPC environments look like?

The HPC market is going through a paradigm shift. The adoption of low-cost, Linux-based clusters that offer significant computing performance and the ability to run a wide array of applications has extended HPC’s reach from its roots in scientific laboratories to smaller workgroups and departments across a broad range of industrial segments, from biotechnology and cloud computing, to manufacturing sectors such as aeronautics, automotive, and energy.

With dramatic drops in server prices, the introduction of multi-core processors, and the availability of high-performance network interconnects, proprietary monolithic systems have given way to commodity scale-out deployments. Users wanting to leverage the proven benefits of HPC can configure hundreds, even thousands, of low-cost servers into clusters that deliver aggregate compute power traditionally only available in supercomputing environments.

As HPC architecture has evolved, there has been a fundamental change in the type of data managed in clustered systems. Many new deployments require large amounts of unstructured data to be processed. Managing the proliferation of digital data – documents, images, video, and other formats, places a premium on high-throughput, high-availability storage. The explosive growth of large data has created a demand for storage systems that deliver superior I/O performance. However, technical limitations in traditional storage technology have prevented these systems from being optimized for I/O throughput. Performance bottlenecks occur when legacy storage systems cannot balance I/O loads or keep up with high-performance compute clusters that scale linearly as new nodes are added.

Despite the obvious advantage in application performance offered by HPC cluster environments, the difficulty in optimizing traditional storage systems for I/O throughput, combined with architectural complexities, integration challenges, and system cost have been barriers to wider adoption of clustered storage solutions in industrial settings. With the introduction of the Xyratex ClusterStor 3000™, a fully integrated, Lustre® based storage cluster solution, these challenges have been met.

Scale-Out Storage Architecture Overview

At the heart of the ClusterStor 3000 is the Scale-Out Storage Architecture, an advanced storage design that provides higher density and system reliability at lower cost. Fully integrating the Scale-Out Storage Architecture with the Lustre file system creates a next-generation HPC storage solution that delivers simplified system installation and operation, optimized HPC performance, and non-disruptive cluster expansion.

Limitations of Traditional Server/Storage Systems

Traditional storage clusters are made up of a number of disparate building blocks, including servers to run the file system and associated software, a high-speed storage interconnect, such as InfiniBand, connected to a RAID controller, and a high-density storage system housing the disk. Each subsystem in this hardware/software combination adds complexity and potential bottlenecks in terms of balancing I/O, reliability, and system scalability.

Scale-Out Storage Architecture – Distributed I/O Processing at Scale

The ClusterStor Scale-Out Storage Architecture is a consolidated hardware and software environment, designed from the ground up to uniquely address the demand for  Lustre scalability and performance, which features an integrated Scalable Storage Unit (SSU). Each SSU supports two industry-standard x86 Embedded Server Modules (ESMs), which connect directly through a common midplane to all drives in the SSU, and share a redundant high-speed interconnect across the midplane for failover services. The ESMs are capable of running industry-standard Linux distributions, and each module has its own dedicated CPU, memory, network, and storage connectivity. When new SSUs are added to the cluster, performance scales linearly as incremental processing network connectivity and storage media are added with each unit. This modular design removes the performance limitation of traditional models in which servers or RAID heads quickly become the bottleneck as more drives are added to the cluster. The Scale-Out Storage Architecture combines enclosure and server enhancements with software stack optimizations to deliver balanced I/O performance (even on large data workloads), and outperform traditional storage topologies by adding easy-to-install, modular SSUs that scale ESMs as HPC storage scales, distributing I/O processing throughout the solution.

Overcoming Lustre’s Challenges

Despite the obvious advantages of using Lustre as a clustered file system in HPC deployments, legacy installations have shown limitations and challenges to users. Integrating Lustre into an HPC solution that overcomes these challenges drove the development and design of the ClusterStor 3000.

Installation and Administration

Lustre is traditionally installed and administered from a command-line interface, requiring fairly advanced knowledge of Linux administration and experience provisioning clusters and managing distributed nodes. System administrators may lack this knowledge or not understand the complexities of the Lustre software, requiring them to rely heavily on professional services and external support to deploy and administer the file system. Additionally, integrating Lustre into a storage system with heterogeneous hardware adds system and support complexity. It can take weeks to get the system up and running reliably, with additional effort required to tune system performance or upgrade large systems without interruption of service

ClusterStor Approach:

ClusterStor systems come installed and configured from the factory, fully optimized to work with Lustre, and ready to deploy right from the loading dock. This innovative HPC storage design leaves behind the complexities of other systems that integrate third-party equipment and require tuning of file system performance in a heterogeneous, multi-vendor infrastructure.

Additionally, the ClusterStor 3000 includes a browser-based GUI that features intuitive wizards to guide administrators though automated Lustre network configuration and user authentication, greatly easing cluster setup. Once the file system is running, the ClusterStor Manager is used to administer the Lustre cluster (including failover and other tasks), monitor operations, analyze performance, gather statistics, generate reports and update the system non-disruptively.

Data Redundancy and Protection

Lustre maintains the integrity of data in the file system, but it does not back up data. Lustre relies exclusively on the redundancy of backing storage devices. To protect data from loss, Lustre users must attach external RAID storage.

ClusterStor Approach:

ClusterStor’s Scale-Out Storage Architecture uses a highly-available RAID 6 array to protect system data and provide optimal fault tolerance and performance. The Lustre file system’s Object Storage Servers (OSSs) are configured for active-active failover, enabling all logical drives to be seen by both OSSs at all times. If one OSS node fails, the active OSS takes over OST management and operations of the failed node. In normal non-failure mode, I/O load is balanced between the OSSs.

System Monitoring and Troubleshooting

Lustre generates events to indicate changing states and conditions in the file system, but it does not provide comprehensive file system monitoring. In the event of file system errors, log descriptions may clearly indicate the problem, but many entries are difficult to interpret without Lustre troubleshooting experience. Additionally, Lustre does not isolate file system errors from faults in the client/server hardware, network interconnect, or backing storage system. In a large-scale file system, determining root cause may be difficult.

ClusterStor Approach:

ClusterStor Manager provides a unified system view of all Lustre nodes, with combined syslogs available to monitor events in the cluster. To enhance the usability of the Lustre logs, filtering and record sorting is available. Additionally, the ClusterStor Manager rolls up log information into diagnostic payloads, ensuring that support engineers have all the information needed to help customers diagnose and resolve issues quickly.

As part of the ClusterStor 3000, Lustre is deployed on a hardware platform offering sophisticated fault isolation to pinpoint the location of a failure, with easy field serviceability to quickly replace failed parts and system wide high-availability, enabling uninterrupted cluster operations if a component fails.

ClusterStor 3000 delivers:

Industry-leading IOPS performance and solution bandwidth – distributed I/O processing and balanced workloads as the system scales linearly

Faster, easier system implementation and reliable expansion – factory-installed and tested components, reduced cable complexity with solution setup in hours, not days or weeks, plus streamlined system expansion with turnkey Scalable Storage Units (additional storage and processing nodes)

Fully integrated hardware and software platform – smaller solution footprint (fewer components, lower cost, and improved investment protection)

Simplified cluster management – ClusterStor Manager automates configuration and node provisioning, and provides performance statistics, system snapshots, and syslog reporting

Extreme reliability, availability, and serviceability – No single point of failure and redundancy built in throughout.

Visit www.xyratex.com  to learn more about the ClusterStor HPC data storage solution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This