Architecting HPC Data Storage Solutions

By Ken Claffey

December 19, 2011

Innovation has been the cornerstone of success in our heritage in the data storage industry for the last twenty-five years.   About two years ago, Xyratex initiated an investigation into additional market opportunities for enterprise class data storage solutions.  Our research yielded interesting data points that aligned with the strengths of Xyratex.  We discovered that not only was the High Performance Computing (HPC) a high growth area for storage, it also represented a dynamic market opportunity with a substantial need for better data storage design. We also learned that the way data storage was being implemented at many of these sites was unduly complicated in terms of initial installation, performance optimization and ongoing management.  

The performance requirements of HPC environments with ever-larger compute clusters have placed unprecedented demands on the I/O performance of supporting storage systems. Storage I/O has become the performance bottleneck for many HPC clusters, as traditional storage systems cannot keep pace with the increasing scale of these deployments. Clearly, a state-of-the-art, scalable HPC storage solution is required. What would a high-performance storage architecture that offers a new level of component integration and performance optimization in HPC environments look like?

The HPC market is going through a paradigm shift. The adoption of low-cost, Linux-based clusters that offer significant computing performance and the ability to run a wide array of applications has extended HPC’s reach from its roots in scientific laboratories to smaller workgroups and departments across a broad range of industrial segments, from biotechnology and cloud computing, to manufacturing sectors such as aeronautics, automotive, and energy.

With dramatic drops in server prices, the introduction of multi-core processors, and the availability of high-performance network interconnects, proprietary monolithic systems have given way to commodity scale-out deployments. Users wanting to leverage the proven benefits of HPC can configure hundreds, even thousands, of low-cost servers into clusters that deliver aggregate compute power traditionally only available in supercomputing environments.

As HPC architecture has evolved, there has been a fundamental change in the type of data managed in clustered systems. Many new deployments require large amounts of unstructured data to be processed. Managing the proliferation of digital data – documents, images, video, and other formats, places a premium on high-throughput, high-availability storage. The explosive growth of large data has created a demand for storage systems that deliver superior I/O performance. However, technical limitations in traditional storage technology have prevented these systems from being optimized for I/O throughput. Performance bottlenecks occur when legacy storage systems cannot balance I/O loads or keep up with high-performance compute clusters that scale linearly as new nodes are added.

Despite the obvious advantage in application performance offered by HPC cluster environments, the difficulty in optimizing traditional storage systems for I/O throughput, combined with architectural complexities, integration challenges, and system cost have been barriers to wider adoption of clustered storage solutions in industrial settings. With the introduction of the Xyratex ClusterStor 3000™, a fully integrated, Lustre® based storage cluster solution, these challenges have been met.

Scale-Out Storage Architecture Overview

At the heart of the ClusterStor 3000 is the Scale-Out Storage Architecture, an advanced storage design that provides higher density and system reliability at lower cost. Fully integrating the Scale-Out Storage Architecture with the Lustre file system creates a next-generation HPC storage solution that delivers simplified system installation and operation, optimized HPC performance, and non-disruptive cluster expansion.

Limitations of Traditional Server/Storage Systems

Traditional storage clusters are made up of a number of disparate building blocks, including servers to run the file system and associated software, a high-speed storage interconnect, such as InfiniBand, connected to a RAID controller, and a high-density storage system housing the disk. Each subsystem in this hardware/software combination adds complexity and potential bottlenecks in terms of balancing I/O, reliability, and system scalability.

Scale-Out Storage Architecture – Distributed I/O Processing at Scale

The ClusterStor Scale-Out Storage Architecture is a consolidated hardware and software environment, designed from the ground up to uniquely address the demand for  Lustre scalability and performance, which features an integrated Scalable Storage Unit (SSU). Each SSU supports two industry-standard x86 Embedded Server Modules (ESMs), which connect directly through a common midplane to all drives in the SSU, and share a redundant high-speed interconnect across the midplane for failover services. The ESMs are capable of running industry-standard Linux distributions, and each module has its own dedicated CPU, memory, network, and storage connectivity. When new SSUs are added to the cluster, performance scales linearly as incremental processing network connectivity and storage media are added with each unit. This modular design removes the performance limitation of traditional models in which servers or RAID heads quickly become the bottleneck as more drives are added to the cluster. The Scale-Out Storage Architecture combines enclosure and server enhancements with software stack optimizations to deliver balanced I/O performance (even on large data workloads), and outperform traditional storage topologies by adding easy-to-install, modular SSUs that scale ESMs as HPC storage scales, distributing I/O processing throughout the solution.

Overcoming Lustre’s Challenges

Despite the obvious advantages of using Lustre as a clustered file system in HPC deployments, legacy installations have shown limitations and challenges to users. Integrating Lustre into an HPC solution that overcomes these challenges drove the development and design of the ClusterStor 3000.

Installation and Administration

Lustre is traditionally installed and administered from a command-line interface, requiring fairly advanced knowledge of Linux administration and experience provisioning clusters and managing distributed nodes. System administrators may lack this knowledge or not understand the complexities of the Lustre software, requiring them to rely heavily on professional services and external support to deploy and administer the file system. Additionally, integrating Lustre into a storage system with heterogeneous hardware adds system and support complexity. It can take weeks to get the system up and running reliably, with additional effort required to tune system performance or upgrade large systems without interruption of service

ClusterStor Approach:

ClusterStor systems come installed and configured from the factory, fully optimized to work with Lustre, and ready to deploy right from the loading dock. This innovative HPC storage design leaves behind the complexities of other systems that integrate third-party equipment and require tuning of file system performance in a heterogeneous, multi-vendor infrastructure.

Additionally, the ClusterStor 3000 includes a browser-based GUI that features intuitive wizards to guide administrators though automated Lustre network configuration and user authentication, greatly easing cluster setup. Once the file system is running, the ClusterStor Manager is used to administer the Lustre cluster (including failover and other tasks), monitor operations, analyze performance, gather statistics, generate reports and update the system non-disruptively.

Data Redundancy and Protection

Lustre maintains the integrity of data in the file system, but it does not back up data. Lustre relies exclusively on the redundancy of backing storage devices. To protect data from loss, Lustre users must attach external RAID storage.

ClusterStor Approach:

ClusterStor’s Scale-Out Storage Architecture uses a highly-available RAID 6 array to protect system data and provide optimal fault tolerance and performance. The Lustre file system’s Object Storage Servers (OSSs) are configured for active-active failover, enabling all logical drives to be seen by both OSSs at all times. If one OSS node fails, the active OSS takes over OST management and operations of the failed node. In normal non-failure mode, I/O load is balanced between the OSSs.

System Monitoring and Troubleshooting

Lustre generates events to indicate changing states and conditions in the file system, but it does not provide comprehensive file system monitoring. In the event of file system errors, log descriptions may clearly indicate the problem, but many entries are difficult to interpret without Lustre troubleshooting experience. Additionally, Lustre does not isolate file system errors from faults in the client/server hardware, network interconnect, or backing storage system. In a large-scale file system, determining root cause may be difficult.

ClusterStor Approach:

ClusterStor Manager provides a unified system view of all Lustre nodes, with combined syslogs available to monitor events in the cluster. To enhance the usability of the Lustre logs, filtering and record sorting is available. Additionally, the ClusterStor Manager rolls up log information into diagnostic payloads, ensuring that support engineers have all the information needed to help customers diagnose and resolve issues quickly.

As part of the ClusterStor 3000, Lustre is deployed on a hardware platform offering sophisticated fault isolation to pinpoint the location of a failure, with easy field serviceability to quickly replace failed parts and system wide high-availability, enabling uninterrupted cluster operations if a component fails.

ClusterStor 3000 delivers:

Industry-leading IOPS performance and solution bandwidth – distributed I/O processing and balanced workloads as the system scales linearly

Faster, easier system implementation and reliable expansion – factory-installed and tested components, reduced cable complexity with solution setup in hours, not days or weeks, plus streamlined system expansion with turnkey Scalable Storage Units (additional storage and processing nodes)

Fully integrated hardware and software platform – smaller solution footprint (fewer components, lower cost, and improved investment protection)

Simplified cluster management – ClusterStor Manager automates configuration and node provisioning, and provides performance statistics, system snapshots, and syslog reporting

Extreme reliability, availability, and serviceability – No single point of failure and redundancy built in throughout.

Visit www.xyratex.com  to learn more about the ClusterStor HPC data storage solution.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurr Read more…

By Doug Black

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Nvidia CEO Predicts AI ‘Cambrian Explosion’

May 25, 2017

The processing power and cloud access to developer tools used to train machine-learning models are making artificial intelligence ubiquitous across computing pl Read more…

By George Leopold

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays Reflects Europe’s HPC Commitment

May 25, 2017

More than 250 attendees and participants came together for PRACEdays17 in Barcelona last week, part of the European HPC Summit Week 2017, held May 15-19 at t Read more…

By Tiffany Trader

PGAS Use will Rise on New H/W Trends, Says Reinders

May 25, 2017

If you have not already tried using PGAS, it is time to consider adding PGAS to the programming techniques you know. Partitioned Global Array Space, commonly kn Read more…

By James Reinders

Exascale Escapes 2018 Budget Axe; Rest of Science Suffers

May 23, 2017

President Trump's proposed $4.1 trillion FY 2018 budget is good for U.S. exascale computing development, but grim for the rest of science and technology spend Read more…

By Tiffany Trader

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Leading Solution Providers

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of "quantum supremacy," researchers are stretching the limits of today's most advance Read more…

By Tiffany Trader

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" process Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This