Work Smarter Not Harder: Platform Analytics Simplifies HPC Infrastructure Analysis

By Nicole Hemsoth

January 4, 2012

By: Gord Sissons, Product Marketing Manager, Platform Computing

High Performance Computing (HPC) data centers are crucibles of innovation and have pioneered advancements such as distributed cluster computing, parallel programming techniques and smart workload scheduling. While modern HPC data centers run at higher levels of efficiency than their commercial counterparts, there is always a need to process higher volumes of complex data in less time, resulting in additional challenges for data center managers. These challenges include dealing with rapid hardware and software advancements; tight or sometimes shrinking budgets; and the need to balance the demands of competing project teams with shifting priorities.

To boost efficiency, most HPC data centers turn to workload managers, which enable resources to be shared among users and project teams according to policy. However, while workload managers are good at enforcing policies; they can’t determine what those policies should be – and after delivering this “low-hanging fruit” in efficiency gains, further improvements become progressively more difficult.

The key to efficiency lies in providing senior managers and decision makers with better information, which in turn help them make better decisions. To analyze the effectiveness of an HPC environment, it is important to collect information about infrastructure (host models, capacities, networks, OS types); how infrastructure is used (application types, resource usage patterns); clusters and queue configurations (composition, scheduling policies); job-related statistics (run-times, pending times, failure rates, resource usage); projects, users and groups; and license inventories and usage patterns.

Turning Data into Knowledge

Workload managers simplify reporting by gathering and aggregating data into database tables, challenges remain. They include:

  • Reporting systems may not incorporate all sources of data, making some questions impossible to answer;
  • Reports and underlying data structures are fixed so users can only ask questions that the database schema is designed to readily answer; and
  • Workload managers can also be costly to develop and maintain, and answering a new question may require significant development time.

When evaluating analysis and visualization tools for their HPC data centers, organizations should evaluate solutions using the following criteria:

Resource Optimization to Control Costs: By understanding exactly how resources are used, by whom and for what purpose, scheduling policies can be adjusted to provide better utilization and overall efficiency. By turning raw data into usable information, trends and changes in usage patterns become obvious quickly. By visualizing how the need for different applications and platforms are changing with time by project or department, planners can make better quality data-driven decisions more quickly. They can consolidate under-used assets and ensure that new spending is aligned optimally to the needs of the business.

Full Visibility into HPC Data Center Operations: Analysts are able to constantly test and validate planning assumptions and make mid-course corrections as needed. With proper analysis tools they can ensure that SLAs are being met and that business critical projects have ample resources. By analyzing key measures like pending time and license denials across different data dimensions, managers and analysts can be confident that users have access to critical resources when needed, but at minimum cost.

Ability to Identify Bottlenecks: By analyzing resource use and service levels together, administrators quickly spot delays impacting productivity. By understanding underlying causes rather than just symptoms, capacity and performance problems can be solved rapidly, often without incremental cost.

Usage reporting and chargeback accounting: Some organizations like to apportion costs between client departments based on measured resource usage. By combining resource, license and job level data, administrators can track and view resource usage by user, department or project. The rich capabilities of analytics software can make it possible to implement sophisticated chargeback accounting solutions tailored to the needs of the organization.

The Business Intelligence Advantage

A good approach for analyzing HPC infrastructure is the use of on-line analytics processing technology (OLAP) widely used in business intelligence applications. OLAP cubes store measures over multiple data dimensions enabling information to be analyzed and manipulated quickly from multiple perspectives.

The superiority of this analytical approach has led HPC vendors to offer OLAP-based infrastructure analysis solutions, including Platform Analytics from Platform Computing. The main challenge with OLAP is the sheer amount of data that needs to be collected, processed and analyzed. Depending on factors like data volumes and retention policies, data volumes can grow massively. Data sets of several terabytes are common.

Analyzing Efficiency with Rational OLAP Technology

While OLAP represents the best approach for analyzing the effectiveness of HPC environments, its use is usually limited to larger data centers due to the associated cost and complexity. Fortunately, recent innovations including Relational OLAP technology (ROLAP) and fast column-oriented databases now provide the means to address these limitations, making advanced analytics practical for smaller HPC environments as well.

ROLAP technology is an alternative to traditional multi-dimensional OLAP that avoids the pre-computation and storage of information in intermediate formats. Rather, it accomplishes the same functionally with standard SQL queries instead. This allows data center managers and analysts to perform full multi-dimensional analysis while avoiding the cost and complexity of pre-building cubes. With ROLAP-based solutions, users have access to their data immediately without waiting for intermediate data marts and cubes to be built involving multi-step time and resource intensive ETL process.

Parallel, Column-Oriented Databases

Another enabler is new types of grid-oriented databases that use column-based organizational strategies for storing data. Since this approach involves reading columns rather than rows, reads can be parallelized and distributed across multiple compute hosts on a cluster, which is made possible by the columns being independent of one another. With appropriate data replication to ensure integrity, columnar databases can be implemented using a “shared nothing” model and distributed on commodity compute hosts. Scaling the database performance becomes a matter of simply adding hosts.

A higher degree of data compression is also possible because data columns are of a homogeneous type and are stored together. Better compression reduces both data storage requirements and data transfer times. However, once a database server runs out of capacity, they become difficult and costly to enlarge. Database architects are often required to employ clustering technology or expensive SAN solutions to increase capacity.

To illustrate the performance gains, Platform Computing tested a traditional relational database compared to a column-oriented database and found loading 11 million records was measured to be 13 times faster using a column-oriented database. Even more significant, query performance in data sets ranging from 15 million to 1 billion records was measured to be between 78 and 100 times faster – a two orders-of-magnitude improvement.

Platform Analytics

By exploiting these advances and supplying a powerful new user interface, Platform Computing has developed an analysis and reporting platform that is simpler, more powerful and less costly to deploy and maintain than competing analysis solutions. This means that even smaller HPC environments can now benefit from the insights that advanced analysis tools can deliver.

Platform Analytics 8 is a next-generation analysis and visualization tool for Platform LSF. It enables analysts and managers to answer business-level questions quickly and easily while aggregating job, resource and license-usage data from multiple clusters boosting productivity and enabling data-driven decision-making.

Unlike analytics solutions that require extensive data manipulation to represent data in a usable form, Platform Analytics 8 incorporates a state-of-the-art ROLAP visualization tool. It also features several pre-built “dashboards” designed to cater information to various audiences, including users, project managers, IT personnel, administrators and line of business executives. With Platform Analytics, cluster administrators can “drill” into detailed data to examine the effectiveness of resource sharing policies, while executives can focus on key-performance indicators and relevant cost, productivity and utilization metrics.

Summary

As HPC environments increase in complexity they become progressively more difficult for analysts, managers and business planners to fully understand. Small inefficiencies tend to accumulate and multiply over time driving costs, slowing problem identification and resolution, and diminishing productivity.

By applying modern analytic methods pioneered in business intelligence, HPC managers and analysts can gain important new insights into their environments. Platform Analytics 8 leverages these recent advancements to provide rich analysis capabilities for Platform LSF. With better tools, managers and planners have access to higher quality information faster. With better information, they can “work smarter” by realizing gains in efficiency and productivity while simultaneously containing costs.

This article was based on the “Work Smarter Not Harder: Easier Said Than Done?” whitepaper. The full whitepaper is available for download here (registration is required).

###

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

2017 Gordon Bell Prize Finalists Named

October 23, 2017

The three finalists for this year’s Gordon Bell Prize in High Performance Computing have been announced. They include two papers on projects run on China’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This