Work Smarter Not Harder: Platform Analytics Simplifies HPC Infrastructure Analysis

By Nicole Hemsoth

January 4, 2012

By: Gord Sissons, Product Marketing Manager, Platform Computing

High Performance Computing (HPC) data centers are crucibles of innovation and have pioneered advancements such as distributed cluster computing, parallel programming techniques and smart workload scheduling. While modern HPC data centers run at higher levels of efficiency than their commercial counterparts, there is always a need to process higher volumes of complex data in less time, resulting in additional challenges for data center managers. These challenges include dealing with rapid hardware and software advancements; tight or sometimes shrinking budgets; and the need to balance the demands of competing project teams with shifting priorities.

To boost efficiency, most HPC data centers turn to workload managers, which enable resources to be shared among users and project teams according to policy. However, while workload managers are good at enforcing policies; they can’t determine what those policies should be – and after delivering this “low-hanging fruit” in efficiency gains, further improvements become progressively more difficult.

The key to efficiency lies in providing senior managers and decision makers with better information, which in turn help them make better decisions. To analyze the effectiveness of an HPC environment, it is important to collect information about infrastructure (host models, capacities, networks, OS types); how infrastructure is used (application types, resource usage patterns); clusters and queue configurations (composition, scheduling policies); job-related statistics (run-times, pending times, failure rates, resource usage); projects, users and groups; and license inventories and usage patterns.

Turning Data into Knowledge

Workload managers simplify reporting by gathering and aggregating data into database tables, challenges remain. They include:

  • Reporting systems may not incorporate all sources of data, making some questions impossible to answer;
  • Reports and underlying data structures are fixed so users can only ask questions that the database schema is designed to readily answer; and
  • Workload managers can also be costly to develop and maintain, and answering a new question may require significant development time.

When evaluating analysis and visualization tools for their HPC data centers, organizations should evaluate solutions using the following criteria:

Resource Optimization to Control Costs: By understanding exactly how resources are used, by whom and for what purpose, scheduling policies can be adjusted to provide better utilization and overall efficiency. By turning raw data into usable information, trends and changes in usage patterns become obvious quickly. By visualizing how the need for different applications and platforms are changing with time by project or department, planners can make better quality data-driven decisions more quickly. They can consolidate under-used assets and ensure that new spending is aligned optimally to the needs of the business.

Full Visibility into HPC Data Center Operations: Analysts are able to constantly test and validate planning assumptions and make mid-course corrections as needed. With proper analysis tools they can ensure that SLAs are being met and that business critical projects have ample resources. By analyzing key measures like pending time and license denials across different data dimensions, managers and analysts can be confident that users have access to critical resources when needed, but at minimum cost.

Ability to Identify Bottlenecks: By analyzing resource use and service levels together, administrators quickly spot delays impacting productivity. By understanding underlying causes rather than just symptoms, capacity and performance problems can be solved rapidly, often without incremental cost.

Usage reporting and chargeback accounting: Some organizations like to apportion costs between client departments based on measured resource usage. By combining resource, license and job level data, administrators can track and view resource usage by user, department or project. The rich capabilities of analytics software can make it possible to implement sophisticated chargeback accounting solutions tailored to the needs of the organization.

The Business Intelligence Advantage

A good approach for analyzing HPC infrastructure is the use of on-line analytics processing technology (OLAP) widely used in business intelligence applications. OLAP cubes store measures over multiple data dimensions enabling information to be analyzed and manipulated quickly from multiple perspectives.

The superiority of this analytical approach has led HPC vendors to offer OLAP-based infrastructure analysis solutions, including Platform Analytics from Platform Computing. The main challenge with OLAP is the sheer amount of data that needs to be collected, processed and analyzed. Depending on factors like data volumes and retention policies, data volumes can grow massively. Data sets of several terabytes are common.

Analyzing Efficiency with Rational OLAP Technology

While OLAP represents the best approach for analyzing the effectiveness of HPC environments, its use is usually limited to larger data centers due to the associated cost and complexity. Fortunately, recent innovations including Relational OLAP technology (ROLAP) and fast column-oriented databases now provide the means to address these limitations, making advanced analytics practical for smaller HPC environments as well.

ROLAP technology is an alternative to traditional multi-dimensional OLAP that avoids the pre-computation and storage of information in intermediate formats. Rather, it accomplishes the same functionally with standard SQL queries instead. This allows data center managers and analysts to perform full multi-dimensional analysis while avoiding the cost and complexity of pre-building cubes. With ROLAP-based solutions, users have access to their data immediately without waiting for intermediate data marts and cubes to be built involving multi-step time and resource intensive ETL process.

Parallel, Column-Oriented Databases

Another enabler is new types of grid-oriented databases that use column-based organizational strategies for storing data. Since this approach involves reading columns rather than rows, reads can be parallelized and distributed across multiple compute hosts on a cluster, which is made possible by the columns being independent of one another. With appropriate data replication to ensure integrity, columnar databases can be implemented using a “shared nothing” model and distributed on commodity compute hosts. Scaling the database performance becomes a matter of simply adding hosts.

A higher degree of data compression is also possible because data columns are of a homogeneous type and are stored together. Better compression reduces both data storage requirements and data transfer times. However, once a database server runs out of capacity, they become difficult and costly to enlarge. Database architects are often required to employ clustering technology or expensive SAN solutions to increase capacity.

To illustrate the performance gains, Platform Computing tested a traditional relational database compared to a column-oriented database and found loading 11 million records was measured to be 13 times faster using a column-oriented database. Even more significant, query performance in data sets ranging from 15 million to 1 billion records was measured to be between 78 and 100 times faster – a two orders-of-magnitude improvement.

Platform Analytics

By exploiting these advances and supplying a powerful new user interface, Platform Computing has developed an analysis and reporting platform that is simpler, more powerful and less costly to deploy and maintain than competing analysis solutions. This means that even smaller HPC environments can now benefit from the insights that advanced analysis tools can deliver.

Platform Analytics 8 is a next-generation analysis and visualization tool for Platform LSF. It enables analysts and managers to answer business-level questions quickly and easily while aggregating job, resource and license-usage data from multiple clusters boosting productivity and enabling data-driven decision-making.

Unlike analytics solutions that require extensive data manipulation to represent data in a usable form, Platform Analytics 8 incorporates a state-of-the-art ROLAP visualization tool. It also features several pre-built “dashboards” designed to cater information to various audiences, including users, project managers, IT personnel, administrators and line of business executives. With Platform Analytics, cluster administrators can “drill” into detailed data to examine the effectiveness of resource sharing policies, while executives can focus on key-performance indicators and relevant cost, productivity and utilization metrics.

Summary

As HPC environments increase in complexity they become progressively more difficult for analysts, managers and business planners to fully understand. Small inefficiencies tend to accumulate and multiply over time driving costs, slowing problem identification and resolution, and diminishing productivity.

By applying modern analytic methods pioneered in business intelligence, HPC managers and analysts can gain important new insights into their environments. Platform Analytics 8 leverages these recent advancements to provide rich analysis capabilities for Platform LSF. With better tools, managers and planners have access to higher quality information faster. With better information, they can “work smarter” by realizing gains in efficiency and productivity while simultaneously containing costs.

This article was based on the “Work Smarter Not Harder: Easier Said Than Done?” whitepaper. The full whitepaper is available for download here (registration is required).

###

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

New Exascale System for Earth Simulation Introduced

April 23, 2018

After four years of development, the Energy Exascale Earth System Model (E3SM) will be unveiled today and released to the broader scientific community this month. The E3SM project is supported by the Department of Energy Read more…

By Staff

RSC Reports 500Tflops, Hot Water Cooled System Deployed at JINR

April 18, 2018

RSC, developer of supercomputers and advanced HPC systems based in Russia, today reported deployment of “the world's first 100% ‘hot water’ liquid cooled supercomputer” at Joint Institute for Nuclear Research (JI Read more…

By Staff

New Device Spots Quantum Particle ‘Fingerprint’

April 18, 2018

Majorana particles have been observed by university researchers employing a device consisting of layers of magnetic insulators on a superconducting material. The advance opens the door to controlling the elusive particle Read more…

By George Leopold

HPE Extreme Performance Solutions

Hybrid HPC is Speeding Time to Insight and Revolutionizing Medicine

High performance computing (HPC) is a key driver of success in many verticals today, and health and life science industries are extensively leveraging these capabilities. Read more…

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’s introduction of an ARM-based system (XC-50) last November. Read more…

By John Russell

Cray Rolls Out AMD-Based CS500; More to Follow?

April 18, 2018

Cray was the latest OEM to bring AMD back into the fold with introduction today of a CS500 option based on AMD’s Epyc processor line. The move follows Cray’ Read more…

By John Russell

IBM: Software Ecosystem for OpenPOWER is Ready for Prime Time

April 16, 2018

With key pieces of the IBM/OpenPOWER versus Intel/x86 gambit settling into place – e.g., the arrival of Power9 chips and Power9-based systems, hyperscaler sup Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Cloud-Readiness and Looking Beyond Application Scaling

April 11, 2018

There are two aspects to consider when determining if an application is suitable for running in the cloud. The first, which we will discuss here under the title Read more…

By Chris Downing

Transitioning from Big Data to Discovery: Data Management as a Keystone Analytics Strategy

April 9, 2018

The past 10-15 years has seen a stark rise in the density, size, and diversity of scientific data being generated in every scientific discipline in the world. Key among the sciences has been the explosion of laboratory technologies that generate large amounts of data in life-sciences and healthcare research. Large amounts of data are now being stored in very large storage name spaces, with little to no organization and a general unease about how to approach analyzing it. Read more…

By Ari Berman, BioTeam, Inc.

IBM Expands Quantum Computing Network

April 5, 2018

IBM is positioning itself as a first mover in establishing the era of commercial quantum computing. The company believes in order for quantum to work, taming qu Read more…

By Tiffany Trader

FY18 Budget & CORAL-2 – Exascale USA Continues to Move Ahead

April 2, 2018

It was not pretty. However, despite some twists and turns, the federal government’s Fiscal Year 2018 (FY18) budget is complete and ended with some very positi Read more…

By Alex R. Larzelere

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Leading Solution Providers

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

HPC and AI – Two Communities Same Future

January 25, 2018

According to Al Gara (Intel Fellow, Data Center Group), high performance computing and artificial intelligence will increasingly intertwine as we transition to Read more…

By Rob Farber

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This