Thinking Forward: Conrad Wolfram on the Computational Knowledge Economy

By Daniel Araya

January 12, 2012

Conrad Wolfram is the founder and managing director of Wolfram Research Europe, which he founded in 1991. He also serves as the strategic director of US-based Wolfram Research, which is run by his older brother Stephen Wolfram. As such, Conrad is intimately involved in developing the company’s flagship product, Mathematica, as well as other Wolfram technologies, like CDF Player and webMathematica, the web framework that underlies Wolfram|Alpha. In an interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS), Conrad describes his thoughts on the evolving knowledge economy, math and science education, and the application of computational science to the arts and humanities.

Daniel Araya: As the founder and managing director of Wolfram Research Europe, and strategic and international director of Wolfram Research, how would you describe your overall research interests?

Conrad Wolfram: Short answer: applying computation everywhere. That’s why we’ve taken to describing Wolfram as the company where “computation meets knowledge,” which I think encapsulates these objectives of pushing the envelope of doing, deploying and democratizing computation, including applying it to knowledge. Inventing new levels of automation and usability is as critical part of achieving those aims as is continuing to step up raw computational power. Computation is such a powerful concept and unleashing it with modern high-performance computing multiplies that power. It’s particularly exciting to see at the moment how broadly applicable our technology has become.

Araya: You’ve been a particularly strong proponent of math education reform through greater use of technology. What kinds of new affordances do you think technology makes possible for learning and education?

Wolfram: Clearly technology introduces new modalities of learning for all subjects — be they video, interactivity or geographical independence. Though it’s only just begun, individualized learning that enables students to discover at their own pace and at least to some extent set their own learning paths is clearly crucial too.

But here’s why math is different. Unlike say, the subject of history, math outside education has fundamentally changed over the last decades because computers have liberated it from what’s typically the limiting step of hand-calculating. We live in a far more mathematical world than we did precisely because math is based on computers doing the calculating.

But in education that transformation hasn’t happened yet. Around the world almost all students learn traditional hand-calculating not computer-based math. Sometimes it’s “computer-assisted,” that is, applying some of the new modalities to the traditional subject. That’s holding them and their countries back from more creative, conceptual math. Indeed a larger and larger chasm is opening up between math for the real world and math in education. Technology isn’t an optional extra for math, it’s fundamental to the mainstream subject of today.

Araya: You suggest that computers could potentially support a shift from a knowledge-based economy to a “computational knowledge economy.” Could you explain what you mean by this?

Wolfram: There are various definitions for “a knowledge economy,” but I think of it as one in which the majority of economic activity is based on knowledge rather than manual labor. But now the value-chain of knowledge is shifting. The question is not whether you have knowledge but know how to compute new knowledge from it, almost always applying computing power to help.

The most developed economies of the future will have a majority of economic activity innovating by computing or generating new knowledge and applying it, not just deploying existing knowledge. It’s in this sense I believe we’re heading for a “computational knowledge economy”.

Araya: How do you envision expanding the capacities of computational technologies like Wolfram|Alpha and Mathematica in the decades to come?

Wolfram: I can’t claim to foresee that far ahead. But I can say what’s guiding us, both our key principles and the picture we see outside. Computation has come of age, and is now used by everyone, either explicitly or implicitly. Our job is to drive adoption of computation by engineering ever greater abilities. Abilities may be raw computational power or power of automation to refine or dramatically re-engineer workflows in every field and at every level of computational endeavor.

In a sense Wolfram|Alpha was just such a re-engineering by injecting computation into knowledge. Our technology — both released and in the pipeline — is really strong right now and is proving what we’ve said for years. But it’s taken until now to build up to what it is today: a single coherent, integrated platform that delivers dramatically more power, usability and reliability.

And our rate of development is so much greater than before because we’re using Mathematica technology as our prime development environment. In fact Wolfram|Alpha’s development and HPC deployment is only practically possible because of the technology tower we’ve built up over more than 20 years. Not everyone checks out Wolfram technologies for what they’re building or analyzing but I think from the Wolfram language to our Workbench IDE to CDF or web deployment we have a very compelling offering.

Araya: Mathematica has been on the forefront of high performance computing with gridMathematica and now GPU computing, can you comment on the current state of HPC?

Wolfram: I think it’s where personal computing was with the Apple I back in the late seventies. that base components are there but not the workflows, automation and therefore the eventual ubiquity of use. For that reason I like to re-characterize the “P” in HPC as productivity not only raw performance. I’m excited to see a more rational online-offline hybridization emerging where we’re marrying the best characteristics of the cloud and of local computation.

Araya: What in your view are the implications of using large-scale computing as a research platform? Does this make interdisciplinary models of research and learning more likely?

Wolfram: Really, interdisciplinary is not new for innovators, it’s just currently more talked about. I think it does have an interesting intersection with HPC because some of the most dramatic technique improvements span many subjects and require HPC. Large-scale data science and image processing are examples — areas we’re very engaged in at Wolfram.

In the past these only got applied where major funding was available with experts in those techniques eg. for weather forecasting. Now they’re being applied across many fields, including delivering results directly to consumers through the cloud.

Automation is key to interdisciplinary success. Users know their fields but rarely the methods or techniques they want to apply. This is a key area where the computing environment needs to provide the delivery intelligence not just raw computational power. Our technology map really fits ideally with this approach.

Araya: Some suggest that technology is replacing workers so quickly that we are have essentially entered into an age of automated labor. How do you envision changes to society and the economy over the coming decades?

Wolfram: Technology enables us to stand on progressively higher levels of automation. For example, technology automated farm labor, to allow people to work in factories, automated factories to allow them to do knowledge processing work, and now we’re starting to replace knowledge processing work so that we can do the higher task of creating knowledge. History shows that rather than replace workers — in the aggregate long term though not always in the short run or a particular locale — it increases our appetite for improvements.

Creativity is clearly at the center of more and more future jobs, particularly the most lucrative. But so is logical thinking and experience. What’s falling out is rote knowledge of the base facts. Yes, we need some of that, but more important is knowledge of how to work things out, how to get machines to do stuff for us rather than necessarily commanding other humans to do it or doing it ourselves. For example, programming is a crucial yet hardly educated-for skill of today.

Araya: We know that digital technologies are having a huge impact on the hard sciences. Do you see computers having an equal impact on the arts and humanities?

Wolfram: As I mentioned before, computers have fundamentally changed the subject of math and therefore dramatically extended the practical scope of those “hard” sciences that for centuries have been very math-based. But even this effect of computers has extended far further, introducing computation to a wide range of new, previously non-computational fields.

Since we first launched Mathematica nearly 25 years ago, it’s amazing to see how much more analytical and computational virtually every field has become including many in the arts and humanities. I always find it instructive to look at our demonstrations.wolfram.com project to remind myself how many fields people have submitted examples from. Sure, there are more in traditionally maths subjects, but the scope is broad.

I think a key driver for turning fields computational is the huge of range of practically deployable computational approaches not available to previous generations, for example large scale data analysis or image processing. Often, the problems in humanities are harder to apply these to, needing modern HPC to get real results. So while computers may not have fundamentally changed ancient arts and humanities subjects the way they have math, the application of math and computing is starting to change almost every field, though there’s a lot further to travel to ubiquitous computationalization.

Araya: Technology has become fundamental to an age in which digital networks serve as platforms for creativity and the imagination. How do you understand this changing milieu?

Wolfram: Every age has its own platforms for expression whether papyrus, paper or the web. Each has offered a richer, more democratized canvas than the last. I’d argue that what’s different now is not just the platform of digital networks but the rate of change of that platform. Whereas a milieu might last a generation or much more in the past, I enhance my canvas and reconceptualize my workflows every few years.

Speaking of the web, I think Web 2.0 has been about the user generating the content, for example, in social networking. I’d argue Web 3.0 is about the computers generating new, derivative content, either from Web 2.0-style user-generated content or from base information. Wolfram|Alpha is one manifestation of this direction, using a computational process to compute a custom answer specific to a question.

Araya: It has become commonplace to suggest that Web-based technologies are leveraging a unique democratic shift in a wide array of technological, political, and social spaces. What do you think of this?

Wolfram: There’s no question we’re living through a fundamental shift that close-to ubiquitous information has provided. And we’re not done yet. In fact, I think we’re in a curious transition where for the first time the underlying information is out there, but complete information overload is obscuring much of its real worth. For example, there’s a big gap between publishing government data and democratizing its practical use for the average citizen. As I’ve argued, I think the computational approach can increasingly bridge this divide with customized, pre-processed results.

As with all technical advances, new problems occur, for example, around security and privacy — who and how to trust information holders that these changes have newly placed in positions of power. But history tells us that over time society will gain experience with today’s dangers and find ways to mitigate them.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data West Brings Technology Leaders to SDSC

December 6, 2018

Data and technology enthusiasts from around the world descended upon the San Diego Supercomputing Center (SDSC) for the third annual Data West conference, which is taking place this week on the campus of the University o Read more…

By Alex Woodie

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar concepts, so it is intriguing to see that many applications are Read more…

By James Reinders

What’s New in HPC Research: Automatic Energy Efficiency, DNA Data Analysis, Post-Exascale & More

December 6, 2018

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

Five Steps to Building a Data Strategy for AI

Our data-centric world is driving many organizations to apply advanced analytics that use artificial intelligence (AI). AI provides intelligent answers to challenging business questions. AI also enables highly personalized user experiences, built when data scientists and analysts learn new information from data that would otherwise go undetected using traditional analytics methods. Read more…

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Topology Can Help Us Find Patterns in Weather

December 6, 2018

Topology--–the study of shapes-- seems to be all the rage. You could even say that data has shape, and shape matters. Shapes are comfortable and familiar conc Read more…

By James Reinders

Zettascale by 2035? China Thinks So

December 6, 2018

Exascale machines (of at least a 1 exaflops peak) are anticipated to arrive by around 2020, a few years behind original predictions; and given extreme-scale performance challenges are not getting any easier, it makes sense that researchers are already looking ahead to the next big 1,000x performance goal post: zettascale computing. Read more…

By Tiffany Trader

Robust Quantum Computers Still a Decade Away, Says Nat’l Academies Report

December 5, 2018

The National Academies of Science, Engineering, and Medicine yesterday released a report – Quantum Computing: Progress and Prospects – whose optimism about Read more…

By John Russell

Revisiting the 2008 Exascale Computing Study at SC18

November 29, 2018

A report published a decade ago conveyed the results of a study aimed at determining if it were possible to achieve 1000X the computational power of the the Read more…

By Scott Gibson

AWS Debuts Lustre as a Service, Accelerates Data Transfer

November 28, 2018

From the Amazon re:Invent main stage in Las Vegas today, Amazon Web Services CEO Andy Jassy introduced Amazon FSx for Lustre, citing a growing body of applicati Read more…

By Tiffany Trader

AWS Launches First Arm Cloud Instances

November 28, 2018

AWS, a macrocosm of the emerging high-performance technology landscape, wants to be everywhere you want to be and offer everything you want to use (or at least Read more…

By Doug Black

Move Over Lustre & Spectrum Scale – Here Comes BeeGFS?

November 26, 2018

Is BeeGFS – the parallel file system with European roots – on a path to compete with Lustre and Spectrum Scale worldwide in HPC environments? Frank Herold Read more…

By John Russell

DOE Under Secretary for Science Paul Dabbar Interviewed at SC18

November 21, 2018

During the 30th annual SC conference in Dallas last week, SC18 hosted U.S. Department of Energy Under Secretary for Science Paul M. Dabbar. In attendance Nov. 13-14, Dabbar delivered remarks at the Top500 panel, met with a number of industry stakeholders and toured the show floor. He also met with HPCwire for an interview, where we discussed the role of the DOE in advancing leadership computing. Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

The Convergence of Big Data and Extreme-Scale HPC

August 31, 2018

As we are heading towards extreme-scale HPC coupled with data intensive analytics like machine learning, the necessary integration of big data and HPC is a curr Read more…

By Rob Farber

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This