Thinking Forward: Conrad Wolfram on the Computational Knowledge Economy

By Daniel Araya

January 12, 2012

Conrad Wolfram is the founder and managing director of Wolfram Research Europe, which he founded in 1991. He also serves as the strategic director of US-based Wolfram Research, which is run by his older brother Stephen Wolfram. As such, Conrad is intimately involved in developing the company’s flagship product, Mathematica, as well as other Wolfram technologies, like CDF Player and webMathematica, the web framework that underlies Wolfram|Alpha. In an interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS), Conrad describes his thoughts on the evolving knowledge economy, math and science education, and the application of computational science to the arts and humanities.

Daniel Araya: As the founder and managing director of Wolfram Research Europe, and strategic and international director of Wolfram Research, how would you describe your overall research interests?

Conrad Wolfram: Short answer: applying computation everywhere. That’s why we’ve taken to describing Wolfram as the company where “computation meets knowledge,” which I think encapsulates these objectives of pushing the envelope of doing, deploying and democratizing computation, including applying it to knowledge. Inventing new levels of automation and usability is as critical part of achieving those aims as is continuing to step up raw computational power. Computation is such a powerful concept and unleashing it with modern high-performance computing multiplies that power. It’s particularly exciting to see at the moment how broadly applicable our technology has become.

Araya: You’ve been a particularly strong proponent of math education reform through greater use of technology. What kinds of new affordances do you think technology makes possible for learning and education?

Wolfram: Clearly technology introduces new modalities of learning for all subjects — be they video, interactivity or geographical independence. Though it’s only just begun, individualized learning that enables students to discover at their own pace and at least to some extent set their own learning paths is clearly crucial too.

But here’s why math is different. Unlike say, the subject of history, math outside education has fundamentally changed over the last decades because computers have liberated it from what’s typically the limiting step of hand-calculating. We live in a far more mathematical world than we did precisely because math is based on computers doing the calculating.

But in education that transformation hasn’t happened yet. Around the world almost all students learn traditional hand-calculating not computer-based math. Sometimes it’s “computer-assisted,” that is, applying some of the new modalities to the traditional subject. That’s holding them and their countries back from more creative, conceptual math. Indeed a larger and larger chasm is opening up between math for the real world and math in education. Technology isn’t an optional extra for math, it’s fundamental to the mainstream subject of today.

Araya: You suggest that computers could potentially support a shift from a knowledge-based economy to a “computational knowledge economy.” Could you explain what you mean by this?

Wolfram: There are various definitions for “a knowledge economy,” but I think of it as one in which the majority of economic activity is based on knowledge rather than manual labor. But now the value-chain of knowledge is shifting. The question is not whether you have knowledge but know how to compute new knowledge from it, almost always applying computing power to help.

The most developed economies of the future will have a majority of economic activity innovating by computing or generating new knowledge and applying it, not just deploying existing knowledge. It’s in this sense I believe we’re heading for a “computational knowledge economy”.

Araya: How do you envision expanding the capacities of computational technologies like Wolfram|Alpha and Mathematica in the decades to come?

Wolfram: I can’t claim to foresee that far ahead. But I can say what’s guiding us, both our key principles and the picture we see outside. Computation has come of age, and is now used by everyone, either explicitly or implicitly. Our job is to drive adoption of computation by engineering ever greater abilities. Abilities may be raw computational power or power of automation to refine or dramatically re-engineer workflows in every field and at every level of computational endeavor.

In a sense Wolfram|Alpha was just such a re-engineering by injecting computation into knowledge. Our technology — both released and in the pipeline — is really strong right now and is proving what we’ve said for years. But it’s taken until now to build up to what it is today: a single coherent, integrated platform that delivers dramatically more power, usability and reliability.

And our rate of development is so much greater than before because we’re using Mathematica technology as our prime development environment. In fact Wolfram|Alpha’s development and HPC deployment is only practically possible because of the technology tower we’ve built up over more than 20 years. Not everyone checks out Wolfram technologies for what they’re building or analyzing but I think from the Wolfram language to our Workbench IDE to CDF or web deployment we have a very compelling offering.

Araya: Mathematica has been on the forefront of high performance computing with gridMathematica and now GPU computing, can you comment on the current state of HPC?

Wolfram: I think it’s where personal computing was with the Apple I back in the late seventies. that base components are there but not the workflows, automation and therefore the eventual ubiquity of use. For that reason I like to re-characterize the “P” in HPC as productivity not only raw performance. I’m excited to see a more rational online-offline hybridization emerging where we’re marrying the best characteristics of the cloud and of local computation.

Araya: What in your view are the implications of using large-scale computing as a research platform? Does this make interdisciplinary models of research and learning more likely?

Wolfram: Really, interdisciplinary is not new for innovators, it’s just currently more talked about. I think it does have an interesting intersection with HPC because some of the most dramatic technique improvements span many subjects and require HPC. Large-scale data science and image processing are examples — areas we’re very engaged in at Wolfram.

In the past these only got applied where major funding was available with experts in those techniques eg. for weather forecasting. Now they’re being applied across many fields, including delivering results directly to consumers through the cloud.

Automation is key to interdisciplinary success. Users know their fields but rarely the methods or techniques they want to apply. This is a key area where the computing environment needs to provide the delivery intelligence not just raw computational power. Our technology map really fits ideally with this approach.

Araya: Some suggest that technology is replacing workers so quickly that we are have essentially entered into an age of automated labor. How do you envision changes to society and the economy over the coming decades?

Wolfram: Technology enables us to stand on progressively higher levels of automation. For example, technology automated farm labor, to allow people to work in factories, automated factories to allow them to do knowledge processing work, and now we’re starting to replace knowledge processing work so that we can do the higher task of creating knowledge. History shows that rather than replace workers — in the aggregate long term though not always in the short run or a particular locale — it increases our appetite for improvements.

Creativity is clearly at the center of more and more future jobs, particularly the most lucrative. But so is logical thinking and experience. What’s falling out is rote knowledge of the base facts. Yes, we need some of that, but more important is knowledge of how to work things out, how to get machines to do stuff for us rather than necessarily commanding other humans to do it or doing it ourselves. For example, programming is a crucial yet hardly educated-for skill of today.

Araya: We know that digital technologies are having a huge impact on the hard sciences. Do you see computers having an equal impact on the arts and humanities?

Wolfram: As I mentioned before, computers have fundamentally changed the subject of math and therefore dramatically extended the practical scope of those “hard” sciences that for centuries have been very math-based. But even this effect of computers has extended far further, introducing computation to a wide range of new, previously non-computational fields.

Since we first launched Mathematica nearly 25 years ago, it’s amazing to see how much more analytical and computational virtually every field has become including many in the arts and humanities. I always find it instructive to look at our demonstrations.wolfram.com project to remind myself how many fields people have submitted examples from. Sure, there are more in traditionally maths subjects, but the scope is broad.

I think a key driver for turning fields computational is the huge of range of practically deployable computational approaches not available to previous generations, for example large scale data analysis or image processing. Often, the problems in humanities are harder to apply these to, needing modern HPC to get real results. So while computers may not have fundamentally changed ancient arts and humanities subjects the way they have math, the application of math and computing is starting to change almost every field, though there’s a lot further to travel to ubiquitous computationalization.

Araya: Technology has become fundamental to an age in which digital networks serve as platforms for creativity and the imagination. How do you understand this changing milieu?

Wolfram: Every age has its own platforms for expression whether papyrus, paper or the web. Each has offered a richer, more democratized canvas than the last. I’d argue that what’s different now is not just the platform of digital networks but the rate of change of that platform. Whereas a milieu might last a generation or much more in the past, I enhance my canvas and reconceptualize my workflows every few years.

Speaking of the web, I think Web 2.0 has been about the user generating the content, for example, in social networking. I’d argue Web 3.0 is about the computers generating new, derivative content, either from Web 2.0-style user-generated content or from base information. Wolfram|Alpha is one manifestation of this direction, using a computational process to compute a custom answer specific to a question.

Araya: It has become commonplace to suggest that Web-based technologies are leveraging a unique democratic shift in a wide array of technological, political, and social spaces. What do you think of this?

Wolfram: There’s no question we’re living through a fundamental shift that close-to ubiquitous information has provided. And we’re not done yet. In fact, I think we’re in a curious transition where for the first time the underlying information is out there, but complete information overload is obscuring much of its real worth. For example, there’s a big gap between publishing government data and democratizing its practical use for the average citizen. As I’ve argued, I think the computational approach can increasingly bridge this divide with customized, pre-processed results.

As with all technical advances, new problems occur, for example, around security and privacy — who and how to trust information holders that these changes have newly placed in positions of power. But history tells us that over time society will gain experience with today’s dangers and find ways to mitigate them.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This