Thinking Forward: Conrad Wolfram on the Computational Knowledge Economy

By Daniel Araya

January 12, 2012

Conrad Wolfram is the founder and managing director of Wolfram Research Europe, which he founded in 1991. He also serves as the strategic director of US-based Wolfram Research, which is run by his older brother Stephen Wolfram. As such, Conrad is intimately involved in developing the company’s flagship product, Mathematica, as well as other Wolfram technologies, like CDF Player and webMathematica, the web framework that underlies Wolfram|Alpha. In an interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS), Conrad describes his thoughts on the evolving knowledge economy, math and science education, and the application of computational science to the arts and humanities.

Daniel Araya: As the founder and managing director of Wolfram Research Europe, and strategic and international director of Wolfram Research, how would you describe your overall research interests?

Conrad Wolfram: Short answer: applying computation everywhere. That’s why we’ve taken to describing Wolfram as the company where “computation meets knowledge,” which I think encapsulates these objectives of pushing the envelope of doing, deploying and democratizing computation, including applying it to knowledge. Inventing new levels of automation and usability is as critical part of achieving those aims as is continuing to step up raw computational power. Computation is such a powerful concept and unleashing it with modern high-performance computing multiplies that power. It’s particularly exciting to see at the moment how broadly applicable our technology has become.

Araya: You’ve been a particularly strong proponent of math education reform through greater use of technology. What kinds of new affordances do you think technology makes possible for learning and education?

Wolfram: Clearly technology introduces new modalities of learning for all subjects — be they video, interactivity or geographical independence. Though it’s only just begun, individualized learning that enables students to discover at their own pace and at least to some extent set their own learning paths is clearly crucial too.

But here’s why math is different. Unlike say, the subject of history, math outside education has fundamentally changed over the last decades because computers have liberated it from what’s typically the limiting step of hand-calculating. We live in a far more mathematical world than we did precisely because math is based on computers doing the calculating.

But in education that transformation hasn’t happened yet. Around the world almost all students learn traditional hand-calculating not computer-based math. Sometimes it’s “computer-assisted,” that is, applying some of the new modalities to the traditional subject. That’s holding them and their countries back from more creative, conceptual math. Indeed a larger and larger chasm is opening up between math for the real world and math in education. Technology isn’t an optional extra for math, it’s fundamental to the mainstream subject of today.

Araya: You suggest that computers could potentially support a shift from a knowledge-based economy to a “computational knowledge economy.” Could you explain what you mean by this?

Wolfram: There are various definitions for “a knowledge economy,” but I think of it as one in which the majority of economic activity is based on knowledge rather than manual labor. But now the value-chain of knowledge is shifting. The question is not whether you have knowledge but know how to compute new knowledge from it, almost always applying computing power to help.

The most developed economies of the future will have a majority of economic activity innovating by computing or generating new knowledge and applying it, not just deploying existing knowledge. It’s in this sense I believe we’re heading for a “computational knowledge economy”.

Araya: How do you envision expanding the capacities of computational technologies like Wolfram|Alpha and Mathematica in the decades to come?

Wolfram: I can’t claim to foresee that far ahead. But I can say what’s guiding us, both our key principles and the picture we see outside. Computation has come of age, and is now used by everyone, either explicitly or implicitly. Our job is to drive adoption of computation by engineering ever greater abilities. Abilities may be raw computational power or power of automation to refine or dramatically re-engineer workflows in every field and at every level of computational endeavor.

In a sense Wolfram|Alpha was just such a re-engineering by injecting computation into knowledge. Our technology — both released and in the pipeline — is really strong right now and is proving what we’ve said for years. But it’s taken until now to build up to what it is today: a single coherent, integrated platform that delivers dramatically more power, usability and reliability.

And our rate of development is so much greater than before because we’re using Mathematica technology as our prime development environment. In fact Wolfram|Alpha’s development and HPC deployment is only practically possible because of the technology tower we’ve built up over more than 20 years. Not everyone checks out Wolfram technologies for what they’re building or analyzing but I think from the Wolfram language to our Workbench IDE to CDF or web deployment we have a very compelling offering.

Araya: Mathematica has been on the forefront of high performance computing with gridMathematica and now GPU computing, can you comment on the current state of HPC?

Wolfram: I think it’s where personal computing was with the Apple I back in the late seventies. that base components are there but not the workflows, automation and therefore the eventual ubiquity of use. For that reason I like to re-characterize the “P” in HPC as productivity not only raw performance. I’m excited to see a more rational online-offline hybridization emerging where we’re marrying the best characteristics of the cloud and of local computation.

Araya: What in your view are the implications of using large-scale computing as a research platform? Does this make interdisciplinary models of research and learning more likely?

Wolfram: Really, interdisciplinary is not new for innovators, it’s just currently more talked about. I think it does have an interesting intersection with HPC because some of the most dramatic technique improvements span many subjects and require HPC. Large-scale data science and image processing are examples — areas we’re very engaged in at Wolfram.

In the past these only got applied where major funding was available with experts in those techniques eg. for weather forecasting. Now they’re being applied across many fields, including delivering results directly to consumers through the cloud.

Automation is key to interdisciplinary success. Users know their fields but rarely the methods or techniques they want to apply. This is a key area where the computing environment needs to provide the delivery intelligence not just raw computational power. Our technology map really fits ideally with this approach.

Araya: Some suggest that technology is replacing workers so quickly that we are have essentially entered into an age of automated labor. How do you envision changes to society and the economy over the coming decades?

Wolfram: Technology enables us to stand on progressively higher levels of automation. For example, technology automated farm labor, to allow people to work in factories, automated factories to allow them to do knowledge processing work, and now we’re starting to replace knowledge processing work so that we can do the higher task of creating knowledge. History shows that rather than replace workers — in the aggregate long term though not always in the short run or a particular locale — it increases our appetite for improvements.

Creativity is clearly at the center of more and more future jobs, particularly the most lucrative. But so is logical thinking and experience. What’s falling out is rote knowledge of the base facts. Yes, we need some of that, but more important is knowledge of how to work things out, how to get machines to do stuff for us rather than necessarily commanding other humans to do it or doing it ourselves. For example, programming is a crucial yet hardly educated-for skill of today.

Araya: We know that digital technologies are having a huge impact on the hard sciences. Do you see computers having an equal impact on the arts and humanities?

Wolfram: As I mentioned before, computers have fundamentally changed the subject of math and therefore dramatically extended the practical scope of those “hard” sciences that for centuries have been very math-based. But even this effect of computers has extended far further, introducing computation to a wide range of new, previously non-computational fields.

Since we first launched Mathematica nearly 25 years ago, it’s amazing to see how much more analytical and computational virtually every field has become including many in the arts and humanities. I always find it instructive to look at our demonstrations.wolfram.com project to remind myself how many fields people have submitted examples from. Sure, there are more in traditionally maths subjects, but the scope is broad.

I think a key driver for turning fields computational is the huge of range of practically deployable computational approaches not available to previous generations, for example large scale data analysis or image processing. Often, the problems in humanities are harder to apply these to, needing modern HPC to get real results. So while computers may not have fundamentally changed ancient arts and humanities subjects the way they have math, the application of math and computing is starting to change almost every field, though there’s a lot further to travel to ubiquitous computationalization.

Araya: Technology has become fundamental to an age in which digital networks serve as platforms for creativity and the imagination. How do you understand this changing milieu?

Wolfram: Every age has its own platforms for expression whether papyrus, paper or the web. Each has offered a richer, more democratized canvas than the last. I’d argue that what’s different now is not just the platform of digital networks but the rate of change of that platform. Whereas a milieu might last a generation or much more in the past, I enhance my canvas and reconceptualize my workflows every few years.

Speaking of the web, I think Web 2.0 has been about the user generating the content, for example, in social networking. I’d argue Web 3.0 is about the computers generating new, derivative content, either from Web 2.0-style user-generated content or from base information. Wolfram|Alpha is one manifestation of this direction, using a computational process to compute a custom answer specific to a question.

Araya: It has become commonplace to suggest that Web-based technologies are leveraging a unique democratic shift in a wide array of technological, political, and social spaces. What do you think of this?

Wolfram: There’s no question we’re living through a fundamental shift that close-to ubiquitous information has provided. And we’re not done yet. In fact, I think we’re in a curious transition where for the first time the underlying information is out there, but complete information overload is obscuring much of its real worth. For example, there’s a big gap between publishing government data and democratizing its practical use for the average citizen. As I’ve argued, I think the computational approach can increasingly bridge this divide with customized, pre-processed results.

As with all technical advances, new problems occur, for example, around security and privacy — who and how to trust information holders that these changes have newly placed in positions of power. But history tells us that over time society will gain experience with today’s dangers and find ways to mitigate them.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody would like more juice to run compute-intensive HPC simulatio Read more…

By Alex Woodie

Is Data Science the Fourth Pillar of the Scientific Method?

April 18, 2019

Nvidia CEO Jensen Huang revived a decade-old debate last month when he said that modern data science (AI plus HPC) has become the fourth pillar of the scientific method. While some disagree with the notion that statistic Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing the bounds of what's possible in business and science, in w Read more…

By Alex Woodie with Doug Black and Tiffany Trader

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

powercloud_blog.jpgFor decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Bridging HPC and Cloud Native Development with Kubernetes

The HPC community has historically developed its own specialized software stack including schedulers, filesystems, developer tools, container technologies tuned for performance and large-scale on-premises deployments. Read more…

Google Open Sources TensorFlow Version of MorphNet DL Tool

April 18, 2019

Designing optimum deep neural networks remains a non-trivial exercise. “Given the large search space of possible architectures, designing a network from scratch for your specific application can be prohibitively expens Read more…

By John Russell

A Beginner’s Guide to the ASC19 Finals

April 22, 2019

Three thousand watts. That's how much power the competitors in the 2019 ASC Student Supercomputer Challenge here in Dalian, China, have to work with. Everybody Read more…

By Alex Woodie

At ASF 2019: The Virtuous Circle of Big Data, AI and HPC

April 18, 2019

We've entered a new phase in IT -- in the world, really -- where the combination of big data, artificial intelligence, and high performance computing is pushing Read more…

By Alex Woodie with Doug Black and Tiffany Trader

Interview with 2019 Person to Watch Michela Taufer

April 18, 2019

Today, as part of our ongoing HPCwire People to Watch focus series, we are highlighting our interview with 2019 Person to Watch Michela Taufer. Michela -- the Read more…

By HPCwire Editorial Team

Intel Gold U-Series SKUs Reveal Single Socket Intentions

April 18, 2019

Intel plans to jump into the single socket market with a portion of its just announced Cascade Lake microprocessor line according to one media report. This isn Read more…

By John Russell

BSC Researchers Shrink Floating Point Formats to Accelerate Deep Neural Network Training

April 15, 2019

Sometimes calculating solutions as precisely as a computer can wastes more CPU resources than is necessary. A case in point is with deep learning. In early stag Read more…

By Ken Strandberg

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

Nvidia Doubles Down on Medical AI

April 9, 2019

Nvidia is collaborating with medical groups to push GPU-powered AI tools into clinical settings, including radiology and drug discovery. The GPU leader said Monday it will collaborate with the American College of Radiology (ACR) to provide clinicians with its Clara AI tool kit. The partnership would allow radiologists to leverage AI techniques for diagnostic imaging using their own clinical data. Read more…

By George Leopold

Digging into MLPerf Benchmark Suite to Inform AI Infrastructure Decisions

April 9, 2019

With machine learning and deep learning storming into the datacenter, the new challenge is optimizing infrastructure choices to support diverse ML and DL workfl Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

Oil and Gas Supercloud Clears Out Remaining Knights Landing Inventory: All 38,000 Wafers

March 13, 2019

The McCloud HPC service being built by Australia’s DownUnder GeoSolutions (DUG) outside Houston is set to become the largest oil and gas cloud in the world th Read more…

By Tiffany Trader

Intel Extends FPGA Ecosystem with 10nm Agilex

April 11, 2019

The insatiable appetite for higher throughput and lower latency – particularly where edge analytics and AI, network functions, or for a range of datacenter ac Read more…

By Doug Black

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This