Designer of Microprocessor-Memory Chip Aims to Topple Memory and Power Walls

By Michael Feldman

January 17, 2012

Whether you’re talking about high performance computers, enterprise servers, or mobile devices, the two biggest impediments to application performance in computing today are the memory wall and the power wall. Venray Technology is aiming to knock down those walls with a unique approach that puts CPU cores and DRAM on the same die. The company has been in semi-stealth mode since it inception seven years ago, but is now trying to get the word out about its technology as it searches for a commercial buyer.

Dallas-based Venray is the brainchild of Russell Fish, who made himself the CTO (there is no CEO listed on the website) and the principal architect. Fish is co-designer of the Sh-Boom Processor, and holder of multiple microprocessor patents. These patents turned out to be fundamental to the operation of modern microprocessors and have been licensed by practically every computer and semiconductor manufacturer on the planet. The proceeds from those patents are being used to fund Venray.

Since 2007, Fish and company have been engaged in the design and marketing of a novel CPU-DRAM technology, known as TOMI, which stands for Thread Optimized Multiprocessor. With TOMI, the company aims to do what no other chip maker has done before, namely embed a general-purpose processor in vanilla DRAM. The idea is to use the physical proximity of the CPU and memory, as well as extra-wide busses (4,096 bits, in the case of the first TOMI designs), to flatten the memory wall.

The memory wall is huge problem in high performance computing and big data applications today and will soon limit computing across all segments. The problem was brought home by a 2008 study of multicore performance at Sandia National Labs, in which researchers demonstrated that for certain classes of data-intensive applications, the use of extra cores to increase performance is counter-productive.

For these application profiles, performance basically flattened between four and eight cores, and actually declined beyond that. The problem was that as more cores were added, they were starved for the limited amount of memory bandwidth available, and after a certain point, the overhead of memory contention actually decreased performance. Prospective solutions, such as memory chip stacking (for example, Micron’s Hybrid Memory Cube) are unproven and have yet to find their way into the commercial market.

Some microprocessor-memory integration has been attempted with embedded DRAM (eDRAM), a technology that promises a lot more capacity than can be delivered by on-chip cache memory. It has been used as a foundation for some integrated SoC devices including IBM’s Power7 CPU and Blue Gene ASIC, as well as for many of the processors that power game console devices, such as the Sony PlayStation. Embedded DRAM was also the memory technology of choice for the 2000-era IRAM research effort, which aimed to integrate a 256-bit vector microprocessor with 16MB of memory.

But even though eDRAM is much denser than cache memory, it can’t provide the storage capacity of conventional DRAM. It is also hundreds of times as expensive as regular memory. “The people that have tried to combine CPUs and memory before have usually erred on the side of having the CPUs too big and the memory too small,” says Fish. “They did not understand the difference between embedding DRAM in CPUs and making CPUs in DRAMs.”

The challenge of melding CPUs with DRAM is that microprocessors are much more complex beasts than memories, and as a result, are manufactured with entirely different semiconductor processes. Typically semiconductor logic require ten or more layers of material to be laid down on the die, compared to just three for DRAM. However, if a microprocessor can be designed much more simply, reducing the number and complexity of logic gate connections, it is possible to more or less flatten the layout and use just three layers.

That is the fundamental magic used by TOMI. Its second-generation design, named Borealis, consists of an 8-core RISC CPU built using the three-layer DRAM process. The CPU itself is made up of just 22 thousand transistors (not including cache and the memory controller), embedded in a 1 Gbit DRAM chip. On the 42nm process node, the CPU takes up just 14 percent of the die.

It is possible to use the TOMI technology to implement legacy microprocessor architectures, but big CPUs, in particular, would not be able to squeeze onto their DRAM process technology — at least not at current CMOS geometries. In any case, Fish seem to think the optimal mix of memory to logic is around 5 to 1.

To get to that level, Fish and company pared down its CPU to just the basics: 32-bit integer hardware, and a small set of instructions (forgoing less useful instructions like auto-index and auto-decrement). The lack of floating point hardware, which tend to suck up a lot of silicon real estate, doesn’t rule out for support for those operations; they are just emulated via software libraries.

A very useful side effect of using the simpler DRAM processes is that it’s much cheaper to produce a CPU this way. The cost of manufacturing a billion DRAM transistors is less than a dollar versus more than $300 for a microprocessor. But another big savings is in power draw. The Borealis CPU at 2.1 GHz draws a measly 98 mW. Compare that to the 100-plus watts for an x86 CPU sporting a billion transistors.

Of course, the Borealis microprocessor is much less performant than a billion transistor CPU in raw compute power. It’s specifically built to maximize the throughput of analytics applications chewing on large datasets, aka big data. “We’ve probably built the most efficient big data processor in existence,” claims Fish.

To prove their point, Venray benchmarked their hardware with Sandia Labs’ MapReduce-MPI software and an unstructured data application running on their hardware — a circuit board with 16 Borealis chips (128 cores, 16GB of DRAM). According to the company, the TOMI system was able to achieve nearly 12 times the performance and use less than 1/10 the power compared to the same code running on an Intel Xeon-based cluster. Venray says the hardware would cost about $35 thousand versus $1.65 million for the equivalent x86 system.

Beyond benchmarks, TOMI is built for all sorts of data mining, high-end analytics, and pattern recognition software. To Fish, these are the killer applications that will drive the industry in the future. And since the architecture is naturally energy efficient, TOMI would be equally at home in mobile devices and in cloud servers.

The downside, of course, is that unlike x86 and ARM, the architecture has no vast ecosystem behind it. But according to Fish, by providing a C/C++ compiler via gcc, the whole Linux toolchain can be leveraged. For legacy applications, the bigger problem is the recoding that would have to be done. Most applications assume powerful single-threaded CPUs and small memory footprints, rather than the inverse. None of this deters Fish, who sees the legacy CPU architectures as a dead end, especially for big data applications that is poised to drive a lot of growth in the IT sector.

At this point, Fish and his cohorts are actively in search of a single buyer for TOMI, most likely a computer manufacturer of some sort. According to him, the advantage of the technology is wrapped up in its exclusivity, so licensing the IP would dilute the value to prospective customers. To date, they have received the most attention from buyers outside the US. One overseas group was ready to write “a large check,” but Fish declined, wanting to give US-based companies a shot. According to him, in the past five or six months, prospective buyers in the US have shown increased interest. “Lots of people want to be our friends right now,” he says.

Related articles

IBM Will Chip in on Micron’s 3D Hybrid Memory Cube

Up Against the Memory Wall

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Quinn in a presentation delivered to the 79th HPC User Forum Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watch. McVeigh shares Intel's plans for the year ahead, his pers Read more…

AWS Solution Channel

Shutterstock 152995403

Bayesian ML Models at Scale with AWS Batch

This post was contributed by Ampersand’s Jeffrey Enos, Senior Machine Learning Engineer, Daniel Gerlanc, Senior Director for Data Science, and Brandon Willard, Data Science Lead. Read more…

Microsoft/NVIDIA Solution Channel

Shutterstock 261863138

Using Cloud-Based, GPU-Accelerated AI for Financial Risk Management

There are strict rules governing financial institutions with a number of global regulatory groups publishing financial compliance requirements. Financial institutions face many challenges and legal responsibilities for risk management, compliance violations, and failure to catch financial fraud. Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Intel CPUs and GPUs across multiple partitions. The newly reimag Read more…

Is Time Running Out for Compromise on America COMPETES/USICA Act?

June 22, 2022

You may recall that efforts proposed in 2020 to remake the National Science Foundation (Endless Frontier Act) have since expanded and morphed into two gigantic bills, the America COMPETES Act in the U.S. House of Representatives and the U.S. Innovation and Competition Act in the U.S. Senate. So far, efforts to reconcile the two pieces of legislation have snagged and recent reports... Read more…

Cerebras Systems Thinks Forward on AI Chips as it Claims Performance Win

June 22, 2022

Cerebras Systems makes the largest chip in the world, but is already thinking about its upcoming AI chips as learning models continue to grow at breakneck speed. The company’s latest Wafer Scale Engine chip is indeed the size of a wafer, and is made using TSMC’s 7nm process. The next chip will pack in more cores to handle the fast-growing compute needs of AI, said Andrew Feldman, CEO of Cerebras Systems. Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

IDC Perspective on Integration of Quantum Computing and HPC

June 20, 2022

The insatiable need to compress time to insights from massive and complex datasets is fueling the demand for quantum computing integration into high performance computing (HPC) environments. Such an integration would allow enterprises to accelerate and optimize current HPC applications and processes by simulating and emulating them on today’s noisy... Read more…

Q&A with Intel’s Jeff McVeigh, an HPCwire Person to Watch in 2022

June 17, 2022

HPCwire presents our interview with Jeff McVeigh, vice president and general manager, Super Compute Group, Intel Corporation, and an HPCwire 2022 Person to Watc Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

D-Wave Debuts Advantage2 Prototype; Seeks User Exploration and Feedback

June 16, 2022

Starting today, D-Wave Systems is providing access to a 500-plus-qubit prototype of its forthcoming 7000-qubit Advantage2 quantum annealing computer, which is d Read more…

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Nvidia R&D Chief on How AI is Improving Chip Design

April 18, 2022

Getting a glimpse into Nvidia’s R&D has become a regular feature of the spring GTC conference with Bill Dally, chief scientist and senior vice president of research, providing an overview of Nvidia’s R&D organization and a few details on current priorities. This year, Dally focused mostly on AI tools that Nvidia is both developing and using in-house to improve... Read more…

Royalty-free stock illustration ID: 1919750255

Intel Says UCIe to Outpace PCIe in Speed Race

May 11, 2022

Intel has shared more details on a new interconnect that is the foundation of the company’s long-term plan for x86, Arm and RISC-V architectures to co-exist in a single chip package. The semiconductor company is taking a modular approach to chip design with the option for customers to cram computing blocks such as CPUs, GPUs and AI accelerators inside a single chip package. Read more…

The Final Frontier: US Has Its First Exascale Supercomputer

May 30, 2022

In April 2018, the U.S. Department of Energy announced plans to procure a trio of exascale supercomputers at a total cost of up to $1.8 billion dollars. Over the ensuing four years, many announcements were made, many deadlines were missed, and a pandemic threw the world into disarray. Now, at long last, HPE and Oak Ridge National Laboratory (ORNL) have announced that the first of those... Read more…

AMD/Xilinx Takes Aim at Nvidia with Improved VCK5000 Inferencing Card

March 8, 2022

AMD/Xilinx has released an improved version of its VCK5000 AI inferencing card along with a series of competitive benchmarks aimed directly at Nvidia’s GPU line. AMD says the new VCK5000 has 3x better performance than earlier versions and delivers 2x TCO over Nvidia T4. AMD also showed favorable benchmarks against several Nvidia GPUs, claiming its VCK5000 achieved... Read more…

Top500: Exascale Is Officially Here with Debut of Frontier

May 30, 2022

The 59th installment of the Top500 list, issued today from ISC 2022 in Hamburg, Germany, officially marks a new era in supercomputing with the debut of the first-ever exascale system on the list. Frontier, deployed at the Department of Energy’s Oak Ridge National Laboratory, achieved 1.102 exaflops in its fastest High Performance Linpack run, which was completed... Read more…

Newly-Observed Higgs Mode Holds Promise in Quantum Computing

June 8, 2022

The first-ever appearance of a previously undetectable quantum excitation known as the axial Higgs mode – exciting in its own right – also holds promise for developing and manipulating higher temperature quantum materials... Read more…

Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips

March 22, 2022

The battle for datacenter dominance keeps getting hotter. Today, Nvidia kicked off its spring GTC event with new silicon, new software and a new supercomputer. Speaking from a virtual environment in the Nvidia Omniverse 3D collaboration and simulation platform, CEO Jensen Huang introduced the new Hopper GPU architecture and the H100 GPU... Read more…

PsiQuantum’s Path to 1 Million Qubits

April 21, 2022

PsiQuantum, founded in 2016 by four researchers with roots at Bristol University, Stanford University, and York University, is one of a few quantum computing startups that’s kept a moderately low PR profile. (That’s if you disregard the roughly $700 million in funding it has attracted.) The main reason is PsiQuantum has eschewed the clamorous public chase for... Read more…

Leading Solution Providers

Contributors

ISC 2022 Booth Video Tours

AMD
AWS
DDN
Dell
Intel
Lenovo
Microsoft
PENGUIN SOLUTIONS

AMD Opens Up Chip Design to the Outside for Custom Future

June 15, 2022

AMD is getting personal with chips as it sets sail to make products more to the liking of its customers. The chipmaker detailed a modular chip future in which customers can mix and match non-AMD processors in a custom chip package. "We are focused on making it easier to implement chips with more flexibility," said Mark Papermaster, chief technology officer at AMD during the analyst day meeting late last week. Read more…

Intel Reiterates Plans to Merge CPU, GPU High-performance Chip Roadmaps

May 31, 2022

Intel reiterated it is well on its way to merging its roadmap of high-performance CPUs and GPUs as it shifts over to newer manufacturing processes and packaging technologies in the coming years. The company is merging the CPU and GPU lineups into a chip (codenamed Falcon Shores) which Intel has dubbed an XPU. Falcon Shores... Read more…

India Launches Petascale ‘PARAM Ganga’ Supercomputer

March 8, 2022

Just a couple of weeks ago, the Indian government promised that it had five HPC systems in the final stages of installation and would launch nine new supercomputers this year. Now, it appears to be making good on that promise: the country’s National Supercomputing Mission (NSM) has announced the deployment of “PARAM Ganga” petascale supercomputer at Indian Institute of Technology (IIT)... Read more…

Nvidia Dominates MLPerf Inference, Qualcomm also Shines, Where’s Everybody Else?

April 6, 2022

MLCommons today released its latest MLPerf inferencing results, with another strong showing by Nvidia accelerators inside a diverse array of systems. Roughly fo Read more…

AMD’s MI300 APUs to Power Exascale El Capitan Supercomputer

June 21, 2022

Additional details of the architecture of the exascale El Capitan supercomputer were disclosed today by Lawrence Livermore National Laboratory’s (LLNL) Terri Read more…

Nvidia, Intel to Power Atos-Built MareNostrum 5 Supercomputer

June 16, 2022

The long-troubled, hotly anticipated MareNostrum 5 supercomputer finally has a vendor: Atos, which will be supplying a system that includes both Nvidia and Inte Read more…

Industry Consortium Forms to Drive UCIe Chiplet Interconnect Standard

March 2, 2022

A new industry consortium aims to establish a die-to-die interconnect standard – Universal Chiplet Interconnect Express (UCIe) – in support of an open chipl Read more…

Covid Policies at HPC Conferences Should Reflect HPC Research

June 6, 2022

Supercomputing has been indispensable throughout the Covid-19 pandemic, from modeling the virus and its spread to designing vaccines and therapeutics. But, desp Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire