Designer of Microprocessor-Memory Chip Aims to Topple Memory and Power Walls

By Michael Feldman

January 17, 2012

Whether you’re talking about high performance computers, enterprise servers, or mobile devices, the two biggest impediments to application performance in computing today are the memory wall and the power wall. Venray Technology is aiming to knock down those walls with a unique approach that puts CPU cores and DRAM on the same die. The company has been in semi-stealth mode since it inception seven years ago, but is now trying to get the word out about its technology as it searches for a commercial buyer.

Dallas-based Venray is the brainchild of Russell Fish, who made himself the CTO (there is no CEO listed on the website) and the principal architect. Fish is co-designer of the Sh-Boom Processor, and holder of multiple microprocessor patents. These patents turned out to be fundamental to the operation of modern microprocessors and have been licensed by practically every computer and semiconductor manufacturer on the planet. The proceeds from those patents are being used to fund Venray.

Since 2007, Fish and company have been engaged in the design and marketing of a novel CPU-DRAM technology, known as TOMI, which stands for Thread Optimized Multiprocessor. With TOMI, the company aims to do what no other chip maker has done before, namely embed a general-purpose processor in vanilla DRAM. The idea is to use the physical proximity of the CPU and memory, as well as extra-wide busses (4,096 bits, in the case of the first TOMI designs), to flatten the memory wall.

The memory wall is huge problem in high performance computing and big data applications today and will soon limit computing across all segments. The problem was brought home by a 2008 study of multicore performance at Sandia National Labs, in which researchers demonstrated that for certain classes of data-intensive applications, the use of extra cores to increase performance is counter-productive.

For these application profiles, performance basically flattened between four and eight cores, and actually declined beyond that. The problem was that as more cores were added, they were starved for the limited amount of memory bandwidth available, and after a certain point, the overhead of memory contention actually decreased performance. Prospective solutions, such as memory chip stacking (for example, Micron’s Hybrid Memory Cube) are unproven and have yet to find their way into the commercial market.

Some microprocessor-memory integration has been attempted with embedded DRAM (eDRAM), a technology that promises a lot more capacity than can be delivered by on-chip cache memory. It has been used as a foundation for some integrated SoC devices including IBM’s Power7 CPU and Blue Gene ASIC, as well as for many of the processors that power game console devices, such as the Sony PlayStation. Embedded DRAM was also the memory technology of choice for the 2000-era IRAM research effort, which aimed to integrate a 256-bit vector microprocessor with 16MB of memory.

But even though eDRAM is much denser than cache memory, it can’t provide the storage capacity of conventional DRAM. It is also hundreds of times as expensive as regular memory. “The people that have tried to combine CPUs and memory before have usually erred on the side of having the CPUs too big and the memory too small,” says Fish. “They did not understand the difference between embedding DRAM in CPUs and making CPUs in DRAMs.”

The challenge of melding CPUs with DRAM is that microprocessors are much more complex beasts than memories, and as a result, are manufactured with entirely different semiconductor processes. Typically semiconductor logic require ten or more layers of material to be laid down on the die, compared to just three for DRAM. However, if a microprocessor can be designed much more simply, reducing the number and complexity of logic gate connections, it is possible to more or less flatten the layout and use just three layers.

That is the fundamental magic used by TOMI. Its second-generation design, named Borealis, consists of an 8-core RISC CPU built using the three-layer DRAM process. The CPU itself is made up of just 22 thousand transistors (not including cache and the memory controller), embedded in a 1 Gbit DRAM chip. On the 42nm process node, the CPU takes up just 14 percent of the die.

It is possible to use the TOMI technology to implement legacy microprocessor architectures, but big CPUs, in particular, would not be able to squeeze onto their DRAM process technology — at least not at current CMOS geometries. In any case, Fish seem to think the optimal mix of memory to logic is around 5 to 1.

To get to that level, Fish and company pared down its CPU to just the basics: 32-bit integer hardware, and a small set of instructions (forgoing less useful instructions like auto-index and auto-decrement). The lack of floating point hardware, which tend to suck up a lot of silicon real estate, doesn’t rule out for support for those operations; they are just emulated via software libraries.

A very useful side effect of using the simpler DRAM processes is that it’s much cheaper to produce a CPU this way. The cost of manufacturing a billion DRAM transistors is less than a dollar versus more than $300 for a microprocessor. But another big savings is in power draw. The Borealis CPU at 2.1 GHz draws a measly 98 mW. Compare that to the 100-plus watts for an x86 CPU sporting a billion transistors.

Of course, the Borealis microprocessor is much less performant than a billion transistor CPU in raw compute power. It’s specifically built to maximize the throughput of analytics applications chewing on large datasets, aka big data. “We’ve probably built the most efficient big data processor in existence,” claims Fish.

To prove their point, Venray benchmarked their hardware with Sandia Labs’ MapReduce-MPI software and an unstructured data application running on their hardware — a circuit board with 16 Borealis chips (128 cores, 16GB of DRAM). According to the company, the TOMI system was able to achieve nearly 12 times the performance and use less than 1/10 the power compared to the same code running on an Intel Xeon-based cluster. Venray says the hardware would cost about $35 thousand versus $1.65 million for the equivalent x86 system.

Beyond benchmarks, TOMI is built for all sorts of data mining, high-end analytics, and pattern recognition software. To Fish, these are the killer applications that will drive the industry in the future. And since the architecture is naturally energy efficient, TOMI would be equally at home in mobile devices and in cloud servers.

The downside, of course, is that unlike x86 and ARM, the architecture has no vast ecosystem behind it. But according to Fish, by providing a C/C++ compiler via gcc, the whole Linux toolchain can be leveraged. For legacy applications, the bigger problem is the recoding that would have to be done. Most applications assume powerful single-threaded CPUs and small memory footprints, rather than the inverse. None of this deters Fish, who sees the legacy CPU architectures as a dead end, especially for big data applications that is poised to drive a lot of growth in the IT sector.

At this point, Fish and his cohorts are actively in search of a single buyer for TOMI, most likely a computer manufacturer of some sort. According to him, the advantage of the technology is wrapped up in its exclusivity, so licensing the IP would dilute the value to prospective customers. To date, they have received the most attention from buyers outside the US. One overseas group was ready to write “a large check,” but Fish declined, wanting to give US-based companies a shot. According to him, in the past five or six months, prospective buyers in the US have shown increased interest. “Lots of people want to be our friends right now,” he says.

Related articles

IBM Will Chip in on Micron’s 3D Hybrid Memory Cube

Up Against the Memory Wall

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is enjoying a prosperity seen only every few decades, one driven Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, produ Read more…

By John Russell

HPE Extreme Performance Solutions

AI Can Be Scary. But Choosing the Wrong Partners Can Be Mortifying!

As you continue to dive deeper into AI, you will discover it is more than just deep learning. AI is an extremely complex set of machine learning, deep learning, reinforcement, and analytics algorithms with varying compute, storage, memory, and communications needs. Read more…

IBM Accelerated Insights

From Deep Blue to Summit – 30 Years of Supercomputing Innovation

This week, in honor of the 30th anniversary of the SC conference, we are highlighting some of the most significant IBM contributions to supercomputing over the past 30 years. Read more…

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

How the United States Invests in Supercomputing

November 14, 2018

The CORAL supercomputers Summit and Sierra are now the world's fastest computers and are already contributing to science with early applications. Ahead of SC18, Maciej Chojnowski with ICM at the University of Warsaw discussed the details of the CORAL project with Dr. Dimitri Kusnezov from the U.S. Department of Energy. Read more…

By Maciej Chojnowski

At SC18: Humanitarianism Amid Boom Times for HPC

November 14, 2018

At SC18 in Dallas, the feeling on the ground is one of forward-looking buoyancy. Like boom times that cycle through the Texas oil fields, the HPC industry is en Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can Read more…

By John Russell

New Panasas High Performance Storage Straddles Commercial-Traditional HPC

November 13, 2018

High performance storage vendor Panasas has launched a new version of its ActiveStor product line this morning featuring what the company said is the industry’s first plug-and-play, portable parallel file system that delivers up to 75 Gb/s per rack on industry standard hardware combined with “enterprise-grade reliability and manageability.” Read more…

By Doug Black

SC18 Student Cluster Competition – Revealing the Field

November 13, 2018

It’s November again and we’re almost ready for the kick-off of one of the greatest computer sports events in the world – the SC Student Cluster Competitio Read more…

By Dan Olds

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

OpenACC Talks Up Summit and Community Momentum at SC18

November 12, 2018

OpenACC – the directives-based parallel programing model for optimizing applications on heterogeneous architectures – is showcasing user traction and HPC im Read more…

By John Russell

How ASCI Revolutionized the World of High-Performance Computing and Advanced Modeling and Simulation

November 9, 2018

The 1993 Supercomputing Conference was held in Portland, Oregon. That conference and it’s show floor provided a good snapshot of the uncertainty that U.S. supercomputing was facing in the early 1990s. Many of the companies exhibiting that year would soon be gone, either bankrupt or acquired by somebody else. Read more…

By Alex R. Larzelere

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

Leading Solution Providers

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Google Releases Machine Learning “What-If” Analysis Tool

September 12, 2018

Training machine learning models has long been time-consuming process. Yesterday, Google released a “What-If Tool” for probing how data point changes affect a model’s prediction. The new tool is being launched as a new feature of the open source TensorBoard web application... Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This