Designer of Microprocessor-Memory Chip Aims to Topple Memory and Power Walls

By Michael Feldman

January 17, 2012

Whether you’re talking about high performance computers, enterprise servers, or mobile devices, the two biggest impediments to application performance in computing today are the memory wall and the power wall. Venray Technology is aiming to knock down those walls with a unique approach that puts CPU cores and DRAM on the same die. The company has been in semi-stealth mode since it inception seven years ago, but is now trying to get the word out about its technology as it searches for a commercial buyer.

Dallas-based Venray is the brainchild of Russell Fish, who made himself the CTO (there is no CEO listed on the website) and the principal architect. Fish is co-designer of the Sh-Boom Processor, and holder of multiple microprocessor patents. These patents turned out to be fundamental to the operation of modern microprocessors and have been licensed by practically every computer and semiconductor manufacturer on the planet. The proceeds from those patents are being used to fund Venray.

Since 2007, Fish and company have been engaged in the design and marketing of a novel CPU-DRAM technology, known as TOMI, which stands for Thread Optimized Multiprocessor. With TOMI, the company aims to do what no other chip maker has done before, namely embed a general-purpose processor in vanilla DRAM. The idea is to use the physical proximity of the CPU and memory, as well as extra-wide busses (4,096 bits, in the case of the first TOMI designs), to flatten the memory wall.

The memory wall is huge problem in high performance computing and big data applications today and will soon limit computing across all segments. The problem was brought home by a 2008 study of multicore performance at Sandia National Labs, in which researchers demonstrated that for certain classes of data-intensive applications, the use of extra cores to increase performance is counter-productive.

For these application profiles, performance basically flattened between four and eight cores, and actually declined beyond that. The problem was that as more cores were added, they were starved for the limited amount of memory bandwidth available, and after a certain point, the overhead of memory contention actually decreased performance. Prospective solutions, such as memory chip stacking (for example, Micron’s Hybrid Memory Cube) are unproven and have yet to find their way into the commercial market.

Some microprocessor-memory integration has been attempted with embedded DRAM (eDRAM), a technology that promises a lot more capacity than can be delivered by on-chip cache memory. It has been used as a foundation for some integrated SoC devices including IBM’s Power7 CPU and Blue Gene ASIC, as well as for many of the processors that power game console devices, such as the Sony PlayStation. Embedded DRAM was also the memory technology of choice for the 2000-era IRAM research effort, which aimed to integrate a 256-bit vector microprocessor with 16MB of memory.

But even though eDRAM is much denser than cache memory, it can’t provide the storage capacity of conventional DRAM. It is also hundreds of times as expensive as regular memory. “The people that have tried to combine CPUs and memory before have usually erred on the side of having the CPUs too big and the memory too small,” says Fish. “They did not understand the difference between embedding DRAM in CPUs and making CPUs in DRAMs.”

The challenge of melding CPUs with DRAM is that microprocessors are much more complex beasts than memories, and as a result, are manufactured with entirely different semiconductor processes. Typically semiconductor logic require ten or more layers of material to be laid down on the die, compared to just three for DRAM. However, if a microprocessor can be designed much more simply, reducing the number and complexity of logic gate connections, it is possible to more or less flatten the layout and use just three layers.

That is the fundamental magic used by TOMI. Its second-generation design, named Borealis, consists of an 8-core RISC CPU built using the three-layer DRAM process. The CPU itself is made up of just 22 thousand transistors (not including cache and the memory controller), embedded in a 1 Gbit DRAM chip. On the 42nm process node, the CPU takes up just 14 percent of the die.

It is possible to use the TOMI technology to implement legacy microprocessor architectures, but big CPUs, in particular, would not be able to squeeze onto their DRAM process technology — at least not at current CMOS geometries. In any case, Fish seem to think the optimal mix of memory to logic is around 5 to 1.

To get to that level, Fish and company pared down its CPU to just the basics: 32-bit integer hardware, and a small set of instructions (forgoing less useful instructions like auto-index and auto-decrement). The lack of floating point hardware, which tend to suck up a lot of silicon real estate, doesn’t rule out for support for those operations; they are just emulated via software libraries.

A very useful side effect of using the simpler DRAM processes is that it’s much cheaper to produce a CPU this way. The cost of manufacturing a billion DRAM transistors is less than a dollar versus more than $300 for a microprocessor. But another big savings is in power draw. The Borealis CPU at 2.1 GHz draws a measly 98 mW. Compare that to the 100-plus watts for an x86 CPU sporting a billion transistors.

Of course, the Borealis microprocessor is much less performant than a billion transistor CPU in raw compute power. It’s specifically built to maximize the throughput of analytics applications chewing on large datasets, aka big data. “We’ve probably built the most efficient big data processor in existence,” claims Fish.

To prove their point, Venray benchmarked their hardware with Sandia Labs’ MapReduce-MPI software and an unstructured data application running on their hardware — a circuit board with 16 Borealis chips (128 cores, 16GB of DRAM). According to the company, the TOMI system was able to achieve nearly 12 times the performance and use less than 1/10 the power compared to the same code running on an Intel Xeon-based cluster. Venray says the hardware would cost about $35 thousand versus $1.65 million for the equivalent x86 system.

Beyond benchmarks, TOMI is built for all sorts of data mining, high-end analytics, and pattern recognition software. To Fish, these are the killer applications that will drive the industry in the future. And since the architecture is naturally energy efficient, TOMI would be equally at home in mobile devices and in cloud servers.

The downside, of course, is that unlike x86 and ARM, the architecture has no vast ecosystem behind it. But according to Fish, by providing a C/C++ compiler via gcc, the whole Linux toolchain can be leveraged. For legacy applications, the bigger problem is the recoding that would have to be done. Most applications assume powerful single-threaded CPUs and small memory footprints, rather than the inverse. None of this deters Fish, who sees the legacy CPU architectures as a dead end, especially for big data applications that is poised to drive a lot of growth in the IT sector.

At this point, Fish and his cohorts are actively in search of a single buyer for TOMI, most likely a computer manufacturer of some sort. According to him, the advantage of the technology is wrapped up in its exclusivity, so licensing the IP would dilute the value to prospective customers. To date, they have received the most attention from buyers outside the US. One overseas group was ready to write “a large check,” but Fish declined, wanting to give US-based companies a shot. According to him, in the past five or six months, prospective buyers in the US have shown increased interest. “Lots of people want to be our friends right now,” he says.

Related articles

IBM Will Chip in on Micron’s 3D Hybrid Memory Cube

Up Against the Memory Wall

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Migration Tools Needed to Shift ML to Production

September 20, 2018

The confluence of accelerators like cloud GPUs along with the ability to handle data-rich HPC workloads will help push more machine learning projects into production, concludes a new study that also stresses the importan Read more…

By George Leopold

Kyoto University ACCMS Implements Fine-grained Power Management

September 19, 2018

Data center power management is a ubiquitous challenge and in few places is it more so than at Kyoto University Academic Center for Computing and Media Studies (ACCMS)) where power consumption limits were imposed followi Read more…

By Staff

What’s New in HPC Research: September (Part 1)

September 18, 2018

In this new bimonthly feature, HPCwire will highlight newly published research in the high-performance computing community and related domains. From exascale to quantum computing, the details are here. Check back every Read more…

By Oliver Peckham

HPE Extreme Performance Solutions

Introducing the First Integrated System Management Software for HPC Clusters from HPE

How do you manage your complex, growing cluster environments? Answer that big challenge with the new HPC cluster management solution: HPE Performance Cluster Manager. Read more…

IBM Accelerated Insights

A Crystal Ball for HPC

People are notoriously bad at predicting the future.  This very much includes experts. In the Forbes article “Why Most Predictions Are So Bad” Philip Tetlock discusses the largest and best-known test of the accuracy of expert predictions which show that any experts would do better if they make random guesses. Read more…

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and development. Among other things it would establish a National Quantu Read more…

By John Russell

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Nvidia Accelerates AI Inference in the Datacenter with T4 GPU

September 14, 2018

Nvidia is upping its game for AI inference in the datacenter with a new platform consisting of an inference accelerator chip--the new Turing-based Tesla T4 GPU- Read more…

By George Leopold

DeepSense Combines HPC and AI to Bolster Canada’s Ocean Economy

September 13, 2018

We often hear scientists say that we know less than 10 percent of the life of the oceans. This week, IBM and a group of Canadian industry and government partner Read more…

By Tiffany Trader

Rigetti (and Others) Pursuit of Quantum Advantage

September 11, 2018

Remember ‘quantum supremacy’, the much-touted but little-loved idea that the age of quantum computing would be signaled when quantum computers could tackle Read more…

By John Russell

How FPGAs Accelerate Financial Services Workloads

September 11, 2018

While FSI companies are unlikely, for competitive reasons, to disclose their FPGA strategies, James Reinders offers insights into the case for FPGAs as accelerators for FSI by discussing performance, power, size, latency, jitter and inline processing. Read more…

By James Reinders

Update from Gregory Kurtzer on Singularity’s Push into FS and the Enterprise

September 11, 2018

Container technology is hardly new but it has undergone rapid evolution in the HPC space in recent years to accommodate traditional science workloads and HPC systems requirements. While Docker containers continue to dominate in the enterprise, other variants are becoming important and one alternative with distinctly HPC roots – Singularity – is making an enterprise push targeting advanced scale workload inclusive of HPC. Read more…

By John Russell

At HPC on Wall Street: AI-as-a-Service Accelerates AI Journeys

September 10, 2018

AIaaS – artificial intelligence-as-a-service – is the technology discipline that eases enterprise entry into the mysteries of the AI journey while lowering Read more…

By Doug Black

No Go for GloFo at 7nm; and the Fujitsu A64FX post-K CPU

September 5, 2018

It’s been a news worthy couple of weeks in the semiconductor and HPC industry. There were several HPC relevant disclosures at Hot Chips 2018 to whet appetites Read more…

By Dairsie Latimer

TACC Wins Next NSF-funded Major Supercomputer

July 30, 2018

The Texas Advanced Computing Center (TACC) has won the next NSF-funded big supercomputer beating out rivals including the National Center for Supercomputing Ap Read more…

By John Russell

IBM at Hot Chips: What’s Next for Power

August 23, 2018

With processor, memory and networking technologies all racing to fill in for an ailing Moore’s law, the era of the heterogeneous datacenter is well underway, Read more…

By Tiffany Trader

Requiem for a Phi: Knights Landing Discontinued

July 25, 2018

On Monday, Intel made public its end of life strategy for the Knights Landing "KNL" Phi product set. The announcement makes official what has already been wide Read more…

By Tiffany Trader

CERN Project Sees Orders-of-Magnitude Speedup with AI Approach

August 14, 2018

An award-winning effort at CERN has demonstrated potential to significantly change how the physics based modeling and simulation communities view machine learni Read more…

By Rob Farber

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

New Deep Learning Algorithm Solves Rubik’s Cube

July 25, 2018

Solving (and attempting to solve) Rubik’s Cube has delighted millions of puzzle lovers since 1974 when the cube was invented by Hungarian sculptor and archite Read more…

By John Russell

AMD’s EPYC Road to Redemption in Six Slides

June 21, 2018

A year ago AMD returned to the server market with its EPYC processor line. The earth didn’t tremble but folks took notice. People remember the Opteron fondly Read more…

By John Russell

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

D-Wave Breaks New Ground in Quantum Simulation

July 16, 2018

Last Friday D-Wave scientists and colleagues published work in Science which they say represents the first fulfillment of Richard Feynman’s 1982 notion that Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

House Passes $1.275B National Quantum Initiative

September 17, 2018

Last Thursday the U.S. House of Representatives passed the National Quantum Initiative Act (NQIA) intended to accelerate quantum computing research and developm Read more…

By John Russell

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Intel Announces Cooper Lake, Advances AI Strategy

August 9, 2018

Intel's chief datacenter exec Navin Shenoy kicked off the company's Data-Centric Innovation Summit Wednesday, the day-long program devoted to Intel's datacenter Read more…

By Tiffany Trader

TACC’s ‘Frontera’ Supercomputer Expands Horizon for Extreme-Scale Science

August 29, 2018

The National Science Foundation and the Texas Advanced Computing Center announced today that a new system, called Frontera, will overtake Stampede 2 as the fast Read more…

By Tiffany Trader

GPUs Power Five of World’s Top Seven Supercomputers

June 25, 2018

The top 10 echelon of the newly minted Top500 list boasts three powerful new systems with one common engine: the Nvidia Volta V100 general-purpose graphics proc Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This