Designer of Microprocessor-Memory Chip Aims to Topple Memory and Power Walls

By Michael Feldman

January 17, 2012

Whether you’re talking about high performance computers, enterprise servers, or mobile devices, the two biggest impediments to application performance in computing today are the memory wall and the power wall. Venray Technology is aiming to knock down those walls with a unique approach that puts CPU cores and DRAM on the same die. The company has been in semi-stealth mode since it inception seven years ago, but is now trying to get the word out about its technology as it searches for a commercial buyer.

Dallas-based Venray is the brainchild of Russell Fish, who made himself the CTO (there is no CEO listed on the website) and the principal architect. Fish is co-designer of the Sh-Boom Processor, and holder of multiple microprocessor patents. These patents turned out to be fundamental to the operation of modern microprocessors and have been licensed by practically every computer and semiconductor manufacturer on the planet. The proceeds from those patents are being used to fund Venray.

Since 2007, Fish and company have been engaged in the design and marketing of a novel CPU-DRAM technology, known as TOMI, which stands for Thread Optimized Multiprocessor. With TOMI, the company aims to do what no other chip maker has done before, namely embed a general-purpose processor in vanilla DRAM. The idea is to use the physical proximity of the CPU and memory, as well as extra-wide busses (4,096 bits, in the case of the first TOMI designs), to flatten the memory wall.

The memory wall is huge problem in high performance computing and big data applications today and will soon limit computing across all segments. The problem was brought home by a 2008 study of multicore performance at Sandia National Labs, in which researchers demonstrated that for certain classes of data-intensive applications, the use of extra cores to increase performance is counter-productive.

For these application profiles, performance basically flattened between four and eight cores, and actually declined beyond that. The problem was that as more cores were added, they were starved for the limited amount of memory bandwidth available, and after a certain point, the overhead of memory contention actually decreased performance. Prospective solutions, such as memory chip stacking (for example, Micron’s Hybrid Memory Cube) are unproven and have yet to find their way into the commercial market.

Some microprocessor-memory integration has been attempted with embedded DRAM (eDRAM), a technology that promises a lot more capacity than can be delivered by on-chip cache memory. It has been used as a foundation for some integrated SoC devices including IBM’s Power7 CPU and Blue Gene ASIC, as well as for many of the processors that power game console devices, such as the Sony PlayStation. Embedded DRAM was also the memory technology of choice for the 2000-era IRAM research effort, which aimed to integrate a 256-bit vector microprocessor with 16MB of memory.

But even though eDRAM is much denser than cache memory, it can’t provide the storage capacity of conventional DRAM. It is also hundreds of times as expensive as regular memory. “The people that have tried to combine CPUs and memory before have usually erred on the side of having the CPUs too big and the memory too small,” says Fish. “They did not understand the difference between embedding DRAM in CPUs and making CPUs in DRAMs.”

The challenge of melding CPUs with DRAM is that microprocessors are much more complex beasts than memories, and as a result, are manufactured with entirely different semiconductor processes. Typically semiconductor logic require ten or more layers of material to be laid down on the die, compared to just three for DRAM. However, if a microprocessor can be designed much more simply, reducing the number and complexity of logic gate connections, it is possible to more or less flatten the layout and use just three layers.

That is the fundamental magic used by TOMI. Its second-generation design, named Borealis, consists of an 8-core RISC CPU built using the three-layer DRAM process. The CPU itself is made up of just 22 thousand transistors (not including cache and the memory controller), embedded in a 1 Gbit DRAM chip. On the 42nm process node, the CPU takes up just 14 percent of the die.

It is possible to use the TOMI technology to implement legacy microprocessor architectures, but big CPUs, in particular, would not be able to squeeze onto their DRAM process technology — at least not at current CMOS geometries. In any case, Fish seem to think the optimal mix of memory to logic is around 5 to 1.

To get to that level, Fish and company pared down its CPU to just the basics: 32-bit integer hardware, and a small set of instructions (forgoing less useful instructions like auto-index and auto-decrement). The lack of floating point hardware, which tend to suck up a lot of silicon real estate, doesn’t rule out for support for those operations; they are just emulated via software libraries.

A very useful side effect of using the simpler DRAM processes is that it’s much cheaper to produce a CPU this way. The cost of manufacturing a billion DRAM transistors is less than a dollar versus more than $300 for a microprocessor. But another big savings is in power draw. The Borealis CPU at 2.1 GHz draws a measly 98 mW. Compare that to the 100-plus watts for an x86 CPU sporting a billion transistors.

Of course, the Borealis microprocessor is much less performant than a billion transistor CPU in raw compute power. It’s specifically built to maximize the throughput of analytics applications chewing on large datasets, aka big data. “We’ve probably built the most efficient big data processor in existence,” claims Fish.

To prove their point, Venray benchmarked their hardware with Sandia Labs’ MapReduce-MPI software and an unstructured data application running on their hardware — a circuit board with 16 Borealis chips (128 cores, 16GB of DRAM). According to the company, the TOMI system was able to achieve nearly 12 times the performance and use less than 1/10 the power compared to the same code running on an Intel Xeon-based cluster. Venray says the hardware would cost about $35 thousand versus $1.65 million for the equivalent x86 system.

Beyond benchmarks, TOMI is built for all sorts of data mining, high-end analytics, and pattern recognition software. To Fish, these are the killer applications that will drive the industry in the future. And since the architecture is naturally energy efficient, TOMI would be equally at home in mobile devices and in cloud servers.

The downside, of course, is that unlike x86 and ARM, the architecture has no vast ecosystem behind it. But according to Fish, by providing a C/C++ compiler via gcc, the whole Linux toolchain can be leveraged. For legacy applications, the bigger problem is the recoding that would have to be done. Most applications assume powerful single-threaded CPUs and small memory footprints, rather than the inverse. None of this deters Fish, who sees the legacy CPU architectures as a dead end, especially for big data applications that is poised to drive a lot of growth in the IT sector.

At this point, Fish and his cohorts are actively in search of a single buyer for TOMI, most likely a computer manufacturer of some sort. According to him, the advantage of the technology is wrapped up in its exclusivity, so licensing the IP would dilute the value to prospective customers. To date, they have received the most attention from buyers outside the US. One overseas group was ready to write “a large check,” but Fish declined, wanting to give US-based companies a shot. According to him, in the past five or six months, prospective buyers in the US have shown increased interest. “Lots of people want to be our friends right now,” he says.

Related articles

IBM Will Chip in on Micron’s 3D Hybrid Memory Cube

Up Against the Memory Wall

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penalties to HPC applications. Even as these patches are rolled o Read more…

By Pete Beckman

Intel Touts Silicon Spin Qubits for Quantum Computing

February 14, 2018

Debate around what makes a good qubit and how best to manufacture them is a sprawling topic. There are many insistent voices favoring one or another approach. Referencing a paper published today in Nature, Intel has offe Read more…

By John Russell

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

HPE Extreme Performance Solutions

Safeguard Your HPC Environment with the World’s Most Secure Industry Standard Servers

Today’s organizations operate in an environment with ever-evolving threats, and in order to protect themselves they must continuously bolster their security strategy. Hewlett Packard Enterprise (HPE) and Intel® are addressing modern security challenges with the world’s most secure industry standard servers powered by the latest generation of Intel® Xeon® Scalable processors. Read more…

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended to make it easier, faster and cheaper to train and run machi Read more…

By Doug Black

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

The Food Industry’s Next Journey — from Mars to Exascale

February 12, 2018

Global food producer and one of the world's leading chocolate companies Mars Inc. has a unique perspective on the impact that exascale computing will have on the food industry. Read more…

By Scott Gibson, Oak Ridge National Laboratory

Singularity HPC Container Start-Up – Sylabs – Emerges from Stealth

February 8, 2018

The driving force behind Singularity, the popular HPC container technology, is bringing the open source platform to the enterprise with the launch of a new vent Read more…

By George Leopold

Dell EMC Debuts PowerEdge Servers with AMD EPYC Chips

February 6, 2018

AMD notched another EPYC processor win today with Dell EMC’s introduction of three PowerEdge servers (R6415, R7415, and R7425) based on the EPYC 7000-series p Read more…

By John Russell

‘Next Generation’ Universe Simulation Is Most Advanced Yet

February 5, 2018

The research group that gave us the most detailed time-lapse simulation of the universe’s evolution in 2014, spanning 13.8 billion years of cosmic evolution, is back in the spotlight with an even more advanced cosmological model that is providing new insights into how black holes influence the distribution of dark matter, how heavy elements are produced and distributed, and where magnetic fields originate. Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This