China’s Dark Horse Supercomputing Chip: FeiTeng

By Michael Feldman

January 19, 2012

Chinese development of domestic microprocessors for high performance computing seems to be ramping up. The Godson-3B and ShenWei SW1600 CPUs were the first out of the gate, with the latter chip powering a Chinese petascale supercomputer. Waiting in the wings is the FeiTeng processor, an architecture that could be the one that takes Chinese supercomputing into the exascale realm.

Although, there is not a lot of information publicly available on the latest FeiTeng chip, at one time it was being promoted as “the world’s first 64-bit stream processor dedicated for high-performance science computing.” The architecture, which is variously known as the FeiTeng, YinHe, the YinHe FeiTeng, and the FT64, has been developed at the National University of Defense Technology (NUDT) in Hunan Province. The design work culminated in its first implementation under the FT64 moniker in 2007.

According to a paper presented at the International Symposium on Computer Architecture in 2007 (ISCA 2007) and published by the ACM that year, the FT64 architecture and instruction set was specifically designed with high performance computing in mind. The instructions are of the VLIW persuasion and nearly half of them apply to 64-bit FP operations. Not surprisingly, about 36 percent of the die is devoted to arithmetic operations.

This first-generation FeiTeng was implemented on 130nm process technology and, at 500 MHz, delivered a peak performance of 16 gigaflops. While that’s nothing to get too excited about today, keep in mind that the FT64 is nearly five years old. What’s more impressive is that the chip consumed a mere 8.6 watts of power, which would yield an energy efficiency of about 1.8 gigaflops/watt. The current top of the line NVIDIA GPU in the Tesla M02090, built on 2011-era 40nm technology, delivers about 2.9 gigaflops/watt.

Like its GPGPU cousin, the FT64 was meant to run as a coprocessor, driven by a host CPU. The ACM paper describes an HPC system board that had one host driving eight FT64 and communicating with each coprocessor via an on-chip host interface. Like the GPU-CPU systems of today, FT64 memory and host memory are separate.

The FT64 designers also came up with a stream programming language called SF95, which extended FORTRAN95 with 10 compiler directives to exploit the architecture. The compiler was used to benchmark the FT64 against an Itanium 2 using nine science application kernels (FFT, EP, MG, Swim, CG, Laplace, Jacobi, GEMM, and NLAG-5). Except for the CG kernel where the FT64 had just a tenth of the Itanium’s performance, the stream processor was between 1 and 2.5 times faster than the Itanium on the other kernels, and 8 time faster on FFT.

However, a somewhat different picture of the architecture emerged, based on a seminar delivered last month (December 2011) at the National University of Defense Technology. The seminar abstract is provided here:

YinHe FeiTeng (YHFT) series high-performance general-purpose CPUs, aimed for high-performance computing, are developed by school of computer, National University of Defense Technology. The first generation of the YHFT CPU adapts the EPIC (Explicitly Parallel Instruction Computing) architecture. Its ISA (Instruction Set Architecture) is fully compatible with Intel Itanium2. The second generation is based on the SoC (System-on-Chip) architecture. It is composed of a general-purpose CPU and a stream processor, which is the world’s first 64-bit stream processor dedicated for high-performance science computing. The processor has been successfully used in the YinHe high-performance supercomputer system as an accelerator. The research results are published at ISCA 2007 and IEEE TPDS. The third generation of the YHFT CPU is a multi-core processor. Its ISA is fully compatible with SPARC. It supports floating-point SIMD (Single Instruction Multiple Data) and multi-chip interconnection to enhance parallel processing and constitute a SMP (Symmetric Multi-Processing) system directly. The first version of this multi-core processor has been used on the TH-1A PFLOPS supercomputer systems, and the ongoing upgraded version will be taped out in the next year and used in the next generation of the TH supercomputer system.

According to this, the FT64 was actually the second generation of the architecture and was deployed in some fashion in one of the YinHe (Galaxy) supercomputers in China — presumably this one, although theoretically there could be an even lower-profile YinHe machine in existence somewhere else.

The third generation of the FeiTeng architecture sounds more like a conventional, standalone CPU, rather than a stream accelerator per se. The reference to this latest chip being used in the TianHe-1A supercomputer, with upgraded version due to be deployed in the next generation TH machine, is especially interesting. At 4.7 peak petaflops, the NUDT’s TianHe-1A is currently China’s most powerful machine, but is powered by Intel Xeon and NVIDIA Tesla parts.

It’s not clear how big a role the upgraded FeiTeng chips will play in the next generation TH machine, but the NUDT has not been any more loyal to chip manufacturers, than its US counterparts. In 2010, the NUDT used Intel Xeon and AMD’s Radeon GPUs for its first generation petascale machine, the TianHe-1. The following year they switched to NVIDIA GPUs for the TianHe-1A.

Given China’s desire to develop and use indigenous microprocessors for its HPC sector, it wouldn’t be too surprising to see FeiTeng processors replace both Intel and NVIDIA parts in a future NUDT supercomputer. Obviously, supercomputing centers in the country are experimenting a lot with microprocessors, although at this point are willing to use just about anything that maximizes performance. But it’s almost certain that China would want its first exaflop machine to be entirely built with domestic technology, including, of course, the microprocessors.

Related articles

China’s Indigenous Supercomputing Strategy Bears First Fruit

China Deploys First Petaflop Supercomputer with Native Chips

Top Chinese Supercomputers Point to Aggressive HPC Strategy

China Makes Its Own Supercomputing Cores

China Preps Godson Chip for Supercomputing Duty

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industry updates delivered to you every week!

Empowering High-Performance Computing for Artificial Intelligence

April 19, 2024

Artificial intelligence (AI) presents some of the most challenging demands in information technology, especially concerning computing power and data movement. As a result of these challenges, high-performance computing Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that have occurred about once a decade. With this in mind, the ISC Read more…

2024 Winter Classic: Texas Two Step

April 18, 2024

Texas Tech University. Their middle name is ‘tech’, so it’s no surprise that they’ve been fielding not one, but two teams in the last three Winter Classic cluster competitions. Their teams, dubbed Matador and Red Read more…

2024 Winter Classic: The Return of Team Fayetteville

April 18, 2024

Hailing from Fayetteville, NC, Fayetteville State University stayed under the radar in their first Winter Classic competition in 2022. Solid students for sure, but not a lot of HPC experience. All good. They didn’t Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use of Rigetti’s Novera 9-qubit QPU. The approach by a quantum Read more…

2024 Winter Classic: Meet Team Morehouse

April 17, 2024

Morehouse College? The university is well-known for their long list of illustrious graduates, the rigor of their academics, and the quality of the instruction. They were one of the first schools to sign up for the Winter Read more…

Kathy Yelick on Post-Exascale Challenges

April 18, 2024

With the exascale era underway, the HPC community is already turning its attention to zettascale computing, the next of the 1,000-fold performance leaps that ha Read more…

Software Specialist Horizon Quantum to Build First-of-a-Kind Hardware Testbed

April 18, 2024

Horizon Quantum Computing, a Singapore-based quantum software start-up, announced today it would build its own testbed of quantum computers, starting with use o Read more…

MLCommons Launches New AI Safety Benchmark Initiative

April 16, 2024

MLCommons, organizer of the popular MLPerf benchmarking exercises (training and inference), is starting a new effort to benchmark AI Safety, one of the most pre Read more…

Exciting Updates From Stanford HAI’s Seventh Annual AI Index Report

April 15, 2024

As the AI revolution marches on, it is vital to continually reassess how this technology is reshaping our world. To that end, researchers at Stanford’s Instit Read more…

Intel’s Vision Advantage: Chips Are Available Off-the-Shelf

April 11, 2024

The chip market is facing a crisis: chip development is now concentrated in the hands of the few. A confluence of events this week reminded us how few chips Read more…

The VC View: Quantonation’s Deep Dive into Funding Quantum Start-ups

April 11, 2024

Yesterday Quantonation — which promotes itself as a one-of-a-kind venture capital (VC) company specializing in quantum science and deep physics  — announce Read more…

Nvidia’s GTC Is the New Intel IDF

April 9, 2024

After many years, Nvidia's GPU Technology Conference (GTC) was back in person and has become the conference for those who care about semiconductors and AI. I Read more…

Google Announces Homegrown ARM-based CPUs 

April 9, 2024

Google sprang a surprise at the ongoing Google Next Cloud conference by introducing its own ARM-based CPU called Axion, which will be offered to customers in it Read more…

Nvidia H100: Are 550,000 GPUs Enough for This Year?

August 17, 2023

The GPU Squeeze continues to place a premium on Nvidia H100 GPUs. In a recent Financial Times article, Nvidia reports that it expects to ship 550,000 of its lat Read more…

Synopsys Eats Ansys: Does HPC Get Indigestion?

February 8, 2024

Recently, it was announced that Synopsys is buying HPC tool developer Ansys. Started in Pittsburgh, Pa., in 1970 as Swanson Analysis Systems, Inc. (SASI) by John Swanson (and eventually renamed), Ansys serves the CAE (Computer Aided Engineering)/multiphysics engineering simulation market. Read more…

Intel’s Server and PC Chip Development Will Blur After 2025

January 15, 2024

Intel's dealing with much more than chip rivals breathing down its neck; it is simultaneously integrating a bevy of new technologies such as chiplets, artificia Read more…

Choosing the Right GPU for LLM Inference and Training

December 11, 2023

Accelerating the training and inference processes of deep learning models is crucial for unleashing their true potential and NVIDIA GPUs have emerged as a game- Read more…

Baidu Exits Quantum, Closely Following Alibaba’s Earlier Move

January 5, 2024

Reuters reported this week that Baidu, China’s giant e-commerce and services provider, is exiting the quantum computing development arena. Reuters reported � Read more…

Comparing NVIDIA A100 and NVIDIA L40S: Which GPU is Ideal for AI and Graphics-Intensive Workloads?

October 30, 2023

With long lead times for the NVIDIA H100 and A100 GPUs, many organizations are looking at the new NVIDIA L40S GPU, which it’s a new GPU optimized for AI and g Read more…

Shutterstock 1179408610

Google Addresses the Mysteries of Its Hypercomputer 

December 28, 2023

When Google launched its Hypercomputer earlier this month (December 2023), the first reaction was, "Say what?" It turns out that the Hypercomputer is Google's t Read more…

AMD MI3000A

How AMD May Get Across the CUDA Moat

October 5, 2023

When discussing GenAI, the term "GPU" almost always enters the conversation and the topic often moves toward performance and access. Interestingly, the word "GPU" is assumed to mean "Nvidia" products. (As an aside, the popular Nvidia hardware used in GenAI are not technically... Read more…

Leading Solution Providers

Contributors

Shutterstock 1606064203

Meta’s Zuckerberg Puts Its AI Future in the Hands of 600,000 GPUs

January 25, 2024

In under two minutes, Meta's CEO, Mark Zuckerberg, laid out the company's AI plans, which included a plan to build an artificial intelligence system with the eq Read more…

China Is All In on a RISC-V Future

January 8, 2024

The state of RISC-V in China was discussed in a recent report released by the Jamestown Foundation, a Washington, D.C.-based think tank. The report, entitled "E Read more…

Shutterstock 1285747942

AMD’s Horsepower-packed MI300X GPU Beats Nvidia’s Upcoming H200

December 7, 2023

AMD and Nvidia are locked in an AI performance battle – much like the gaming GPU performance clash the companies have waged for decades. AMD has claimed it Read more…

DoD Takes a Long View of Quantum Computing

December 19, 2023

Given the large sums tied to expensive weapon systems – think $100-million-plus per F-35 fighter – it’s easy to forget the U.S. Department of Defense is a Read more…

Nvidia’s New Blackwell GPU Can Train AI Models with Trillions of Parameters

March 18, 2024

Nvidia's latest and fastest GPU, codenamed Blackwell, is here and will underpin the company's AI plans this year. The chip offers performance improvements from Read more…

Eyes on the Quantum Prize – D-Wave Says its Time is Now

January 30, 2024

Early quantum computing pioneer D-Wave again asserted – that at least for D-Wave – the commercial quantum era has begun. Speaking at its first in-person Ana Read more…

GenAI Having Major Impact on Data Culture, Survey Says

February 21, 2024

While 2023 was the year of GenAI, the adoption rates for GenAI did not match expectations. Most organizations are continuing to invest in GenAI but are yet to Read more…

The GenAI Datacenter Squeeze Is Here

February 1, 2024

The immediate effect of the GenAI GPU Squeeze was to reduce availability, either direct purchase or cloud access, increase cost, and push demand through the roof. A secondary issue has been developing over the last several years. Even though your organization secured several racks... Read more…

  • arrow
  • Click Here for More Headlines
  • arrow
HPCwire