Startup Uses Data Compression to Speed Applications

By Michael Feldman

January 25, 2012

Silicon Valley-based Samplify Systems has launched an application acceleration technology designed to speed up codes that sling a lot of numerical data. But rather than throwing bigger, faster hardware at the problem, the company aims to make programs speedier by optimizing the data flow between the compute cores and the outside world.

Samplify, whose roots are in signal compression has extended the technology to address all numerically-intensive applications. For HPC users, Samplify’s heart is certainly in the right place. In high performance computing, application acceleration is the thirst that can never to be quenched.

The current performance issue in the industry is related to multicore designs. Processors are getting more powerful at a Moore’s Law clip thanks to a proliferation of cores, while bandwidth of external subsystems like memory and I/O is increasing much more slowly (and in discrete steps). That imbalance is the principle reason that HPC applications typically utilize just a small fraction of their hardware hosts.

For example, a science code called ECCO (Estimating Circulation and Climate of Ocean), one of the workhouse applications on NASA’s Pleiades supercomputer, uses only about 1.4 percent of the 1.3 petaflop peak performance of the machine. That’s due mainly to the fact that the CPUs are spending the majority of their time idly waiting for data to arrive. Unfortunately, that scenario is not much of an outlier. According to a research study at NASA, most of the applications on Pleiades have sustained performance in the 3 to 8 percent range.

Such stark inefficiencies are what drove Samplify to come up with its application acceleration offering, known as APAX. In a nutshell, APAX compresses numerical data (both integer and floating point) that flows through a system, thereby increasing data throughput. And it does so in a manner that is transparent to the application.

The technology is being offered in both hardware and software forms and can be deployed in a variety of ways. Specifically, the compression technology can be inserted at all the usual choke points in a computer system — memory, I/O, networks and storage — in order to attack application bottlenecks at their source.

According to Al Wegener, Samplify founder and CTO, most HPC users are not aware that there are a significant number of bits that can be squeezed out of their codes. In today’s supercomputing culture, the traditional solution to data bandwidth constraints has been to over-provision the hardware. “All of the HPC customers we talked to have never even thought of using compression for their applications,” Wegener told HPCwire.

The APAX technology supports both lossless and lossy compression schemes. Under APAX, the lossless scheme usually attains at least a 2:1 compression, effectively doubling bandwidth at the intended choke point. With lossy schemes, which are under user control, APAX compression can easily hit 4:1 and go as high as 8:1.

Here though, the user has to be somewhat careful, since lossy schemes rely on trimming off some of the numerical precision. In general, application programmers tend to be a bit lazy with precision, preferring to use generic data types in their codes and gravitating towards double precision floating point. But casting 12-bit integer inputs into 64-bit floating point values for the sake of convenience doesn’t magically increase the accuracy of the results and ends up wasting a lot of bits. In working with trial customers, Samplify has found that most applications can tolerate lossy compression in the 4:1 to 6:1 range before the results start to diverge.

From a performance per watt perspective, APAX hardware is probably the most efficient way to go. For example, if a chipmaker wanted to insert compression into its memory controller design, it would simply license the APAX IP block (a couple of hundred logic gates) from Samplify.

Once in the controller, the compression logic, along with compatible drivers, would squeeze the bits sent from the compute cores such that all numerical data would be stored in DRAM in a compressed format. When reading from memory, the same logic would decompress the data before passing it back to the number crunching silicon. Assuming 2:1 compression, memory bandwidth for all numerical data traffic would be doubled. Conveniently, it would also double the effective memory storage.

In an HPC environment, that can add up quickly. Wegener offers the case of NVIDIA’s Tesla GPU devices. Using 2:1 compression, the GPU card’s 6 GB of GDDR5 memory turn into 12 GB of effective storage. Likewise, the 150 GB/sec of bandwidth becomes 300 GB/sec. “I think that would be a big deal,” says Wegener.

Other likely targets for the compression technology would be network adapters, such as InfiniBand or Ethernet NICs, storage controllers, and Southbridge chips. Along with modified drivers, the compression-spiked ASICs would be able to turbo-charge data performance across a system, cluster or even a whole datacenter.

For HPC applications on existing hardware, the most straightforward method is to insert the APAX software into existing applications or wrap it around MPI libraries. This could be especially useful on more generic cloud infrastructure, such as what Amazon offers, where network capability and topology is much less conducive to HPC communication compared to a purpose-built supercomputer.

While the technology Samplify is offering is not a panacea for all these data bottlenecks, it has the potential to make a significant dent in throughput and storage. Right now the company is in the process of collecting proof points for the technology. According the Wegener, APAX has been validated by two Samplify investors: Schlumberger, an oil & gas exploration firm, and Mamiya, a Japanese manufacture of high-end digital cameras. In the case of Schlumberger, the technology is being used in its software incarnation, while Mamiya has inserted the APAX into its FPGA chips. Other trials are in process with seismic and multiphysics customers, but the company is not willing to name names at this point.

Samplify envisions a market for APAX in high performance and cloud computing as well as at the other end of the IT spectrum in mobile computing devices and consumer electronics. The company estimates a total addressable market of $700 million by 2014: $370 million for APAX IP blocks (Verilog RTL) on 1.8 billion devices and $330 million for APAX software on 16.7 million cores.

As of this week, the APAX technology is ready to ship in software form. The hardware IP block will be available for licensing in the middle of the year. Pricing has not been disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Mellanox Reacts to Activist Investor Pressures in Letter to Shareholders

March 16, 2018

Activist investor Starboard Value has been exerting pressure on Mellanox Technologies to increase its returns. In response, the high-performance networking company on Monday, March 12, published a letter to shareholders outlining its proposal for a May 2018 extraordinary general meeting (EGM) of shareholders and highlighting its long-term growth strategy and focus on operating margin improvement. Read more…

By Staff

Quantum Computing vs. Our ‘Caveman Newtonian Brain’: Why Quantum Is So Hard

March 15, 2018

Quantum is coming. Maybe not today, maybe not tomorrow, but soon enough. Within 10 to 12 years, we’re told, special-purpose quantum systems will enter the commercial realm. Assuming this happens, we can also assume that quantum will, over extended time, become increasingly general purpose as it delivers mind-blowing power. Read more…

By Doug Black

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise IT in its willingness to outsource computational power. The m Read more…

By Chris Downing

HPE Extreme Performance Solutions

Achieve Optimal Performance at Scale with High Performance Fabrics for HPC

High Performance Computing (HPC) is unlocking a new era of speed and productivity to fuel business transformation. Rapid advancements in HPC capabilities are helping organizations operate faster and more effectively than ever, but in today’s fast-paced marketplace, a new generation of technologies is required to reach greater scalability and cost-efficiency. Read more…

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theoretical physicist, cosmologist, author and director of resea Read more…

By Tiffany Trader

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

Stephen Hawking, Legendary Scientist, Dies at 76

March 14, 2018

Stephen Hawking passed away at his home in Cambridge, England, in the early morning of March 14; he was 76. Born on January 8, 1942, Hawking was an English theo Read more…

By Tiffany Trader

Hyperion Tackles Elusive Quantum Computing Landscape

March 13, 2018

Quantum computing - exciting and off-putting all at once - is a kaleidoscope of technology and market questions whose shapes and positions are far from settled. Read more…

By John Russell

Part Two: Navigating Life Sciences Choppy HPC Waters in 2018

March 8, 2018

2017 was not necessarily the best year to build a large HPC system for life sciences say Ari Berman, VP and GM of consulting services, and Aaron Gardner, direct Read more…

By John Russell

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

SciNet Launches Niagara, Canada’s Fastest Supercomputer

March 5, 2018

SciNet and the University of Toronto today unveiled "Niagara," Canada's most-powerful supercomputer, comprising 1,500 dense Lenovo ThinkSystem SD530 high-perfor Read more…

By Tiffany Trader

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Alibaba Cloud Launches ‘Bare Metal,’ HPC Instances in Europe

February 28, 2018

Alibaba, the e-commerce giant from China, is taking a run at AWS in the global public cloud computing market with new offerings aimed at the surging demand for Read more…

By Tiffany Trader

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

World Record: Quantum Computer with 46 Qubits Simulated

December 18, 2017

Scientists from the Jülich Supercomputing Centre have set a new world record. Together with researchers from Wuhan University and the University of Groningen, Read more…

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This