Startup Uses Data Compression to Speed Applications

By Michael Feldman

January 25, 2012

Silicon Valley-based Samplify Systems has launched an application acceleration technology designed to speed up codes that sling a lot of numerical data. But rather than throwing bigger, faster hardware at the problem, the company aims to make programs speedier by optimizing the data flow between the compute cores and the outside world.

Samplify, whose roots are in signal compression has extended the technology to address all numerically-intensive applications. For HPC users, Samplify’s heart is certainly in the right place. In high performance computing, application acceleration is the thirst that can never to be quenched.

The current performance issue in the industry is related to multicore designs. Processors are getting more powerful at a Moore’s Law clip thanks to a proliferation of cores, while bandwidth of external subsystems like memory and I/O is increasing much more slowly (and in discrete steps). That imbalance is the principle reason that HPC applications typically utilize just a small fraction of their hardware hosts.

For example, a science code called ECCO (Estimating Circulation and Climate of Ocean), one of the workhouse applications on NASA’s Pleiades supercomputer, uses only about 1.4 percent of the 1.3 petaflop peak performance of the machine. That’s due mainly to the fact that the CPUs are spending the majority of their time idly waiting for data to arrive. Unfortunately, that scenario is not much of an outlier. According to a research study at NASA, most of the applications on Pleiades have sustained performance in the 3 to 8 percent range.

Such stark inefficiencies are what drove Samplify to come up with its application acceleration offering, known as APAX. In a nutshell, APAX compresses numerical data (both integer and floating point) that flows through a system, thereby increasing data throughput. And it does so in a manner that is transparent to the application.

The technology is being offered in both hardware and software forms and can be deployed in a variety of ways. Specifically, the compression technology can be inserted at all the usual choke points in a computer system — memory, I/O, networks and storage — in order to attack application bottlenecks at their source.

According to Al Wegener, Samplify founder and CTO, most HPC users are not aware that there are a significant number of bits that can be squeezed out of their codes. In today’s supercomputing culture, the traditional solution to data bandwidth constraints has been to over-provision the hardware. “All of the HPC customers we talked to have never even thought of using compression for their applications,” Wegener told HPCwire.

The APAX technology supports both lossless and lossy compression schemes. Under APAX, the lossless scheme usually attains at least a 2:1 compression, effectively doubling bandwidth at the intended choke point. With lossy schemes, which are under user control, APAX compression can easily hit 4:1 and go as high as 8:1.

Here though, the user has to be somewhat careful, since lossy schemes rely on trimming off some of the numerical precision. In general, application programmers tend to be a bit lazy with precision, preferring to use generic data types in their codes and gravitating towards double precision floating point. But casting 12-bit integer inputs into 64-bit floating point values for the sake of convenience doesn’t magically increase the accuracy of the results and ends up wasting a lot of bits. In working with trial customers, Samplify has found that most applications can tolerate lossy compression in the 4:1 to 6:1 range before the results start to diverge.

From a performance per watt perspective, APAX hardware is probably the most efficient way to go. For example, if a chipmaker wanted to insert compression into its memory controller design, it would simply license the APAX IP block (a couple of hundred logic gates) from Samplify.

Once in the controller, the compression logic, along with compatible drivers, would squeeze the bits sent from the compute cores such that all numerical data would be stored in DRAM in a compressed format. When reading from memory, the same logic would decompress the data before passing it back to the number crunching silicon. Assuming 2:1 compression, memory bandwidth for all numerical data traffic would be doubled. Conveniently, it would also double the effective memory storage.

In an HPC environment, that can add up quickly. Wegener offers the case of NVIDIA’s Tesla GPU devices. Using 2:1 compression, the GPU card’s 6 GB of GDDR5 memory turn into 12 GB of effective storage. Likewise, the 150 GB/sec of bandwidth becomes 300 GB/sec. “I think that would be a big deal,” says Wegener.

Other likely targets for the compression technology would be network adapters, such as InfiniBand or Ethernet NICs, storage controllers, and Southbridge chips. Along with modified drivers, the compression-spiked ASICs would be able to turbo-charge data performance across a system, cluster or even a whole datacenter.

For HPC applications on existing hardware, the most straightforward method is to insert the APAX software into existing applications or wrap it around MPI libraries. This could be especially useful on more generic cloud infrastructure, such as what Amazon offers, where network capability and topology is much less conducive to HPC communication compared to a purpose-built supercomputer.

While the technology Samplify is offering is not a panacea for all these data bottlenecks, it has the potential to make a significant dent in throughput and storage. Right now the company is in the process of collecting proof points for the technology. According the Wegener, APAX has been validated by two Samplify investors: Schlumberger, an oil & gas exploration firm, and Mamiya, a Japanese manufacture of high-end digital cameras. In the case of Schlumberger, the technology is being used in its software incarnation, while Mamiya has inserted the APAX into its FPGA chips. Other trials are in process with seismic and multiphysics customers, but the company is not willing to name names at this point.

Samplify envisions a market for APAX in high performance and cloud computing as well as at the other end of the IT spectrum in mobile computing devices and consumer electronics. The company estimates a total addressable market of $700 million by 2014: $370 million for APAX IP blocks (Verilog RTL) on 1.8 billion devices and $330 million for APAX software on 16.7 million cores.

As of this week, the APAX technology is ready to ship in software form. The hardware IP block will be available for licensing in the middle of the year. Pricing has not been disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

UCSD Web-based Tool Tracking CA Wildfires Generates 1.5M Views

October 16, 2017

Tracking the wildfires raging in northern CA is an unpleasant but necessary part of guiding efforts to fight the fires and safely evacuate affected residents. One such tool – Firemap – is a web-based tool developed b Read more…

By John Russell

Exascale Imperative: New Movie from HPE Makes a Compelling Case

October 13, 2017

Why is pursuing exascale computing so important? In a new video – Hewlett Packard Enterprise: Eighteen Zeros – four HPE executives, a prominent national lab HPC researcher, and HPCwire managing editor Tiffany Trader Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

OLCF’s 200 Petaflops Summit Machine Still Slated for 2018 Start-up

October 3, 2017

The Department of Energy’s planned 200 petaflops Summit computer, which is currently being installed at Oak Ridge Leadership Computing Facility, is on track t Read more…

By John Russell

US Exascale Program – Some Additional Clarity

September 28, 2017

The last time we left the Department of Energy’s exascale computing program in July, things were looking very positive. Both the U.S. House and Senate had pas Read more…

By Alex R. Larzelere

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Cente Read more…

By Linda Barney

  • arrow
  • Click Here for More Headlines
  • arrow
Share This