Startup Uses Data Compression to Speed Applications

By Michael Feldman

January 25, 2012

Silicon Valley-based Samplify Systems has launched an application acceleration technology designed to speed up codes that sling a lot of numerical data. But rather than throwing bigger, faster hardware at the problem, the company aims to make programs speedier by optimizing the data flow between the compute cores and the outside world.

Samplify, whose roots are in signal compression has extended the technology to address all numerically-intensive applications. For HPC users, Samplify’s heart is certainly in the right place. In high performance computing, application acceleration is the thirst that can never to be quenched.

The current performance issue in the industry is related to multicore designs. Processors are getting more powerful at a Moore’s Law clip thanks to a proliferation of cores, while bandwidth of external subsystems like memory and I/O is increasing much more slowly (and in discrete steps). That imbalance is the principle reason that HPC applications typically utilize just a small fraction of their hardware hosts.

For example, a science code called ECCO (Estimating Circulation and Climate of Ocean), one of the workhouse applications on NASA’s Pleiades supercomputer, uses only about 1.4 percent of the 1.3 petaflop peak performance of the machine. That’s due mainly to the fact that the CPUs are spending the majority of their time idly waiting for data to arrive. Unfortunately, that scenario is not much of an outlier. According to a research study at NASA, most of the applications on Pleiades have sustained performance in the 3 to 8 percent range.

Such stark inefficiencies are what drove Samplify to come up with its application acceleration offering, known as APAX. In a nutshell, APAX compresses numerical data (both integer and floating point) that flows through a system, thereby increasing data throughput. And it does so in a manner that is transparent to the application.

The technology is being offered in both hardware and software forms and can be deployed in a variety of ways. Specifically, the compression technology can be inserted at all the usual choke points in a computer system — memory, I/O, networks and storage — in order to attack application bottlenecks at their source.

According to Al Wegener, Samplify founder and CTO, most HPC users are not aware that there are a significant number of bits that can be squeezed out of their codes. In today’s supercomputing culture, the traditional solution to data bandwidth constraints has been to over-provision the hardware. “All of the HPC customers we talked to have never even thought of using compression for their applications,” Wegener told HPCwire.

The APAX technology supports both lossless and lossy compression schemes. Under APAX, the lossless scheme usually attains at least a 2:1 compression, effectively doubling bandwidth at the intended choke point. With lossy schemes, which are under user control, APAX compression can easily hit 4:1 and go as high as 8:1.

Here though, the user has to be somewhat careful, since lossy schemes rely on trimming off some of the numerical precision. In general, application programmers tend to be a bit lazy with precision, preferring to use generic data types in their codes and gravitating towards double precision floating point. But casting 12-bit integer inputs into 64-bit floating point values for the sake of convenience doesn’t magically increase the accuracy of the results and ends up wasting a lot of bits. In working with trial customers, Samplify has found that most applications can tolerate lossy compression in the 4:1 to 6:1 range before the results start to diverge.

From a performance per watt perspective, APAX hardware is probably the most efficient way to go. For example, if a chipmaker wanted to insert compression into its memory controller design, it would simply license the APAX IP block (a couple of hundred logic gates) from Samplify.

Once in the controller, the compression logic, along with compatible drivers, would squeeze the bits sent from the compute cores such that all numerical data would be stored in DRAM in a compressed format. When reading from memory, the same logic would decompress the data before passing it back to the number crunching silicon. Assuming 2:1 compression, memory bandwidth for all numerical data traffic would be doubled. Conveniently, it would also double the effective memory storage.

In an HPC environment, that can add up quickly. Wegener offers the case of NVIDIA’s Tesla GPU devices. Using 2:1 compression, the GPU card’s 6 GB of GDDR5 memory turn into 12 GB of effective storage. Likewise, the 150 GB/sec of bandwidth becomes 300 GB/sec. “I think that would be a big deal,” says Wegener.

Other likely targets for the compression technology would be network adapters, such as InfiniBand or Ethernet NICs, storage controllers, and Southbridge chips. Along with modified drivers, the compression-spiked ASICs would be able to turbo-charge data performance across a system, cluster or even a whole datacenter.

For HPC applications on existing hardware, the most straightforward method is to insert the APAX software into existing applications or wrap it around MPI libraries. This could be especially useful on more generic cloud infrastructure, such as what Amazon offers, where network capability and topology is much less conducive to HPC communication compared to a purpose-built supercomputer.

While the technology Samplify is offering is not a panacea for all these data bottlenecks, it has the potential to make a significant dent in throughput and storage. Right now the company is in the process of collecting proof points for the technology. According the Wegener, APAX has been validated by two Samplify investors: Schlumberger, an oil & gas exploration firm, and Mamiya, a Japanese manufacture of high-end digital cameras. In the case of Schlumberger, the technology is being used in its software incarnation, while Mamiya has inserted the APAX into its FPGA chips. Other trials are in process with seismic and multiphysics customers, but the company is not willing to name names at this point.

Samplify envisions a market for APAX in high performance and cloud computing as well as at the other end of the IT spectrum in mobile computing devices and consumer electronics. The company estimates a total addressable market of $700 million by 2014: $370 million for APAX IP blocks (Verilog RTL) on 1.8 billion devices and $330 million for APAX software on 16.7 million cores.

As of this week, the APAX technology is ready to ship in software form. The hardware IP block will be available for licensing in the middle of the year. Pricing has not been disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Women Coders from Russia, Italy, and Poland Top Study

January 17, 2017

According to a study posted on HackerRank today the best women coders as judged by performance on HackerRank challenges come from Russia, Italy, and Poland. Read more…

By John Russell

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

Spurred by Global Ambitions, Inspur in Joint HPC Deal with DDN

January 17, 2017

Inspur, the fast-growth cloud computing and server vendor from China that has several systems on the current Top500 list, and DDN, a leader in high-end storage, have announced a joint sales and marketing agreement to produce solutions based on DDN storage platforms integrated with servers, networking, software and services from Inspur. Read more…

By Doug Black

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

  • arrow
  • Click Here for More Headlines
  • arrow
Share This