Startup Uses Data Compression to Speed Applications

By Michael Feldman

January 25, 2012

Silicon Valley-based Samplify Systems has launched an application acceleration technology designed to speed up codes that sling a lot of numerical data. But rather than throwing bigger, faster hardware at the problem, the company aims to make programs speedier by optimizing the data flow between the compute cores and the outside world.

Samplify, whose roots are in signal compression has extended the technology to address all numerically-intensive applications. For HPC users, Samplify’s heart is certainly in the right place. In high performance computing, application acceleration is the thirst that can never to be quenched.

The current performance issue in the industry is related to multicore designs. Processors are getting more powerful at a Moore’s Law clip thanks to a proliferation of cores, while bandwidth of external subsystems like memory and I/O is increasing much more slowly (and in discrete steps). That imbalance is the principle reason that HPC applications typically utilize just a small fraction of their hardware hosts.

For example, a science code called ECCO (Estimating Circulation and Climate of Ocean), one of the workhouse applications on NASA’s Pleiades supercomputer, uses only about 1.4 percent of the 1.3 petaflop peak performance of the machine. That’s due mainly to the fact that the CPUs are spending the majority of their time idly waiting for data to arrive. Unfortunately, that scenario is not much of an outlier. According to a research study at NASA, most of the applications on Pleiades have sustained performance in the 3 to 8 percent range.

Such stark inefficiencies are what drove Samplify to come up with its application acceleration offering, known as APAX. In a nutshell, APAX compresses numerical data (both integer and floating point) that flows through a system, thereby increasing data throughput. And it does so in a manner that is transparent to the application.

The technology is being offered in both hardware and software forms and can be deployed in a variety of ways. Specifically, the compression technology can be inserted at all the usual choke points in a computer system — memory, I/O, networks and storage — in order to attack application bottlenecks at their source.

According to Al Wegener, Samplify founder and CTO, most HPC users are not aware that there are a significant number of bits that can be squeezed out of their codes. In today’s supercomputing culture, the traditional solution to data bandwidth constraints has been to over-provision the hardware. “All of the HPC customers we talked to have never even thought of using compression for their applications,” Wegener told HPCwire.

The APAX technology supports both lossless and lossy compression schemes. Under APAX, the lossless scheme usually attains at least a 2:1 compression, effectively doubling bandwidth at the intended choke point. With lossy schemes, which are under user control, APAX compression can easily hit 4:1 and go as high as 8:1.

Here though, the user has to be somewhat careful, since lossy schemes rely on trimming off some of the numerical precision. In general, application programmers tend to be a bit lazy with precision, preferring to use generic data types in their codes and gravitating towards double precision floating point. But casting 12-bit integer inputs into 64-bit floating point values for the sake of convenience doesn’t magically increase the accuracy of the results and ends up wasting a lot of bits. In working with trial customers, Samplify has found that most applications can tolerate lossy compression in the 4:1 to 6:1 range before the results start to diverge.

From a performance per watt perspective, APAX hardware is probably the most efficient way to go. For example, if a chipmaker wanted to insert compression into its memory controller design, it would simply license the APAX IP block (a couple of hundred logic gates) from Samplify.

Once in the controller, the compression logic, along with compatible drivers, would squeeze the bits sent from the compute cores such that all numerical data would be stored in DRAM in a compressed format. When reading from memory, the same logic would decompress the data before passing it back to the number crunching silicon. Assuming 2:1 compression, memory bandwidth for all numerical data traffic would be doubled. Conveniently, it would also double the effective memory storage.

In an HPC environment, that can add up quickly. Wegener offers the case of NVIDIA’s Tesla GPU devices. Using 2:1 compression, the GPU card’s 6 GB of GDDR5 memory turn into 12 GB of effective storage. Likewise, the 150 GB/sec of bandwidth becomes 300 GB/sec. “I think that would be a big deal,” says Wegener.

Other likely targets for the compression technology would be network adapters, such as InfiniBand or Ethernet NICs, storage controllers, and Southbridge chips. Along with modified drivers, the compression-spiked ASICs would be able to turbo-charge data performance across a system, cluster or even a whole datacenter.

For HPC applications on existing hardware, the most straightforward method is to insert the APAX software into existing applications or wrap it around MPI libraries. This could be especially useful on more generic cloud infrastructure, such as what Amazon offers, where network capability and topology is much less conducive to HPC communication compared to a purpose-built supercomputer.

While the technology Samplify is offering is not a panacea for all these data bottlenecks, it has the potential to make a significant dent in throughput and storage. Right now the company is in the process of collecting proof points for the technology. According the Wegener, APAX has been validated by two Samplify investors: Schlumberger, an oil & gas exploration firm, and Mamiya, a Japanese manufacture of high-end digital cameras. In the case of Schlumberger, the technology is being used in its software incarnation, while Mamiya has inserted the APAX into its FPGA chips. Other trials are in process with seismic and multiphysics customers, but the company is not willing to name names at this point.

Samplify envisions a market for APAX in high performance and cloud computing as well as at the other end of the IT spectrum in mobile computing devices and consumer electronics. The company estimates a total addressable market of $700 million by 2014: $370 million for APAX IP blocks (Verilog RTL) on 1.8 billion devices and $330 million for APAX software on 16.7 million cores.

As of this week, the APAX technology is ready to ship in software form. The hardware IP block will be available for licensing in the middle of the year. Pricing has not been disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

Weekly Twitter Roundup (Feb. 23, 2017)

February 23, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPE Server Shows Low Latency on STAC-N1 Test

February 22, 2017

The performance of trade and match servers can be a critical differentiator for financial trading houses. Read more…

By John Russell

HPC Financial Update (Feb. 2017)

February 22, 2017

In this recurring feature, we’ll provide you with financial highlights from companies in the HPC industry. Check back in regularly for an updated list with the most pertinent fiscal information. Read more…

By Thomas Ayres

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Rethinking HPC Platforms for ‘Second Gen’ Applications

February 22, 2017

Just what constitutes HPC and how best to support it is a keen topic currently. Read more…

By John Russell

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

Advancing Modular Supercomputing with DEEP and DEEP-ER Architectures

February 24, 2017

Knowing that the jump to exascale will require novel architectural approaches capable of delivering dramatic efficiency and performance gains, researchers around the world are hard at work on next-generation HPC systems. Read more…

By Sean Thielen

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Leading Solution Providers

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This