Startup Uses Data Compression to Speed Applications

By Michael Feldman

January 25, 2012

Silicon Valley-based Samplify Systems has launched an application acceleration technology designed to speed up codes that sling a lot of numerical data. But rather than throwing bigger, faster hardware at the problem, the company aims to make programs speedier by optimizing the data flow between the compute cores and the outside world.

Samplify, whose roots are in signal compression has extended the technology to address all numerically-intensive applications. For HPC users, Samplify’s heart is certainly in the right place. In high performance computing, application acceleration is the thirst that can never to be quenched.

The current performance issue in the industry is related to multicore designs. Processors are getting more powerful at a Moore’s Law clip thanks to a proliferation of cores, while bandwidth of external subsystems like memory and I/O is increasing much more slowly (and in discrete steps). That imbalance is the principle reason that HPC applications typically utilize just a small fraction of their hardware hosts.

For example, a science code called ECCO (Estimating Circulation and Climate of Ocean), one of the workhouse applications on NASA’s Pleiades supercomputer, uses only about 1.4 percent of the 1.3 petaflop peak performance of the machine. That’s due mainly to the fact that the CPUs are spending the majority of their time idly waiting for data to arrive. Unfortunately, that scenario is not much of an outlier. According to a research study at NASA, most of the applications on Pleiades have sustained performance in the 3 to 8 percent range.

Such stark inefficiencies are what drove Samplify to come up with its application acceleration offering, known as APAX. In a nutshell, APAX compresses numerical data (both integer and floating point) that flows through a system, thereby increasing data throughput. And it does so in a manner that is transparent to the application.

The technology is being offered in both hardware and software forms and can be deployed in a variety of ways. Specifically, the compression technology can be inserted at all the usual choke points in a computer system — memory, I/O, networks and storage — in order to attack application bottlenecks at their source.

According to Al Wegener, Samplify founder and CTO, most HPC users are not aware that there are a significant number of bits that can be squeezed out of their codes. In today’s supercomputing culture, the traditional solution to data bandwidth constraints has been to over-provision the hardware. “All of the HPC customers we talked to have never even thought of using compression for their applications,” Wegener told HPCwire.

The APAX technology supports both lossless and lossy compression schemes. Under APAX, the lossless scheme usually attains at least a 2:1 compression, effectively doubling bandwidth at the intended choke point. With lossy schemes, which are under user control, APAX compression can easily hit 4:1 and go as high as 8:1.

Here though, the user has to be somewhat careful, since lossy schemes rely on trimming off some of the numerical precision. In general, application programmers tend to be a bit lazy with precision, preferring to use generic data types in their codes and gravitating towards double precision floating point. But casting 12-bit integer inputs into 64-bit floating point values for the sake of convenience doesn’t magically increase the accuracy of the results and ends up wasting a lot of bits. In working with trial customers, Samplify has found that most applications can tolerate lossy compression in the 4:1 to 6:1 range before the results start to diverge.

From a performance per watt perspective, APAX hardware is probably the most efficient way to go. For example, if a chipmaker wanted to insert compression into its memory controller design, it would simply license the APAX IP block (a couple of hundred logic gates) from Samplify.

Once in the controller, the compression logic, along with compatible drivers, would squeeze the bits sent from the compute cores such that all numerical data would be stored in DRAM in a compressed format. When reading from memory, the same logic would decompress the data before passing it back to the number crunching silicon. Assuming 2:1 compression, memory bandwidth for all numerical data traffic would be doubled. Conveniently, it would also double the effective memory storage.

In an HPC environment, that can add up quickly. Wegener offers the case of NVIDIA’s Tesla GPU devices. Using 2:1 compression, the GPU card’s 6 GB of GDDR5 memory turn into 12 GB of effective storage. Likewise, the 150 GB/sec of bandwidth becomes 300 GB/sec. “I think that would be a big deal,” says Wegener.

Other likely targets for the compression technology would be network adapters, such as InfiniBand or Ethernet NICs, storage controllers, and Southbridge chips. Along with modified drivers, the compression-spiked ASICs would be able to turbo-charge data performance across a system, cluster or even a whole datacenter.

For HPC applications on existing hardware, the most straightforward method is to insert the APAX software into existing applications or wrap it around MPI libraries. This could be especially useful on more generic cloud infrastructure, such as what Amazon offers, where network capability and topology is much less conducive to HPC communication compared to a purpose-built supercomputer.

While the technology Samplify is offering is not a panacea for all these data bottlenecks, it has the potential to make a significant dent in throughput and storage. Right now the company is in the process of collecting proof points for the technology. According the Wegener, APAX has been validated by two Samplify investors: Schlumberger, an oil & gas exploration firm, and Mamiya, a Japanese manufacture of high-end digital cameras. In the case of Schlumberger, the technology is being used in its software incarnation, while Mamiya has inserted the APAX into its FPGA chips. Other trials are in process with seismic and multiphysics customers, but the company is not willing to name names at this point.

Samplify envisions a market for APAX in high performance and cloud computing as well as at the other end of the IT spectrum in mobile computing devices and consumer electronics. The company estimates a total addressable market of $700 million by 2014: $370 million for APAX IP blocks (Verilog RTL) on 1.8 billion devices and $330 million for APAX software on 16.7 million cores.

As of this week, the APAX technology is ready to ship in software form. The hardware IP block will be available for licensing in the middle of the year. Pricing has not been disclosed.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Samsung and a number of other corporations to its IBM Q Net Read more…

By Tiffany Trader

TACC Researchers Test AI Traffic Monitoring Tool in Austin

December 13, 2017

Traffic jams and mishaps are often painful and sometimes dangerous facts of life. At this week’s IEEE International Conference on Big Data being held in Boston, researchers from TACC and colleagues will present a new Read more…

By HPCwire Staff

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in what has become an overwhelmingly two-socket landscape in the d Read more…

By John Russell

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in Read more…

By Tiffany Trader

IBM Launches Commercial Quantum Network with Samsung, ORNL

December 14, 2017

In the race to commercialize quantum computing, IBM is one of several companies leading the pack. Today, IBM announced it had signed JPMorgan Chase, Daimler AG, Read more…

By Tiffany Trader

AMD Wins Another: Baidu to Deploy EPYC on Single Socket Servers

December 13, 2017

When AMD introduced its EPYC chip line in June, the company said a portion of the line was specifically designed to re-invigorate a single socket segment in wha Read more…

By John Russell

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as several tech giants jockey to establish a pole position in the race toward commercializ Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This