Aircraft Simulations Push Computing to the Cutting Edge

By Nicole Hemsoth

January 26, 2012

Designing an aircraft is one of the more expensive endeavors in the manufacturing business. Complex engineering, strict safety regulations, and high levels of quality control, all conspire to make such development time consuming and labor intensive. It’s no surprise that large manufacturers like Boeing and Airbus have turned to computing, and especially high performance computing, to streamline the effort.

To get a sense of the current state of the art, we asked Guus Dekkers, CIO of EADS and Airbus, to shed some light on the computational challenges involved. In the interview that follows, Dekkers, who will be delivering the opening keynote on this subject at ISC’12 in Hamburg, Germany, explains how HPC is being applied to aircraft simulation today and what the future might bring.

HPCwire: Before coming to Airbus and EADS, you worked in the automotive industry. How do these industries differ in their need for, and use of, high performance computing?

Guus Dekkers: Due to the complexity of both the product and the development process, the aeronautics industry has the need to pre-load and virtualize its development process far more than is the case today in the automotive industry. Whereas in an automotive environment the number of prototypes built has been substantially reduced during the last decade, a new car model will nevertheless still see a substantial number of physical models being built. This compares to a handful of extremely expensive prototypes in the aeronautics industry, with only few — and costly! — capabilities to correct if needed.

Also the number of engineering domains in which advanced simulation is being used is far more substantial than in automotive. Because the aeronautics industry needs to address advanced technical challenges unknown to the automotive industry (ex: lightning stroke, ice accreditation prediction, calculation of dynamic loads during different flight phases, …), and also because the establishment of a physical mock-up is in the automotive industry at times the far easier and efficient way to take design decisions.

HPCwire: Is the use of HPC for aircraft simulations actually enabling engineers to come up with better, more complex designs or is its main benefit cost reduction, via the replacement of physical prototyping and testing?

Dekkers: I would say it is both. Today the engineers do no longer limit themselves to simulate an aircraft’s behavior as a static model, but use the availability of vast high performance computing power to calculate the optimal scenario under different, partially dynamic situations. This allows them to optimize important safety, environmental and performance criteria like fuel-burn, noise, aerodynamics optimizations and performance prediction for multiple scenario’s, which has been impossible in the current precision up until recently. This clearly allows us to design better aircraft.

Certainly, HPC simulation allows as well reducing physical testing — with especially reduced wind-tunnel testing — which helps to slice cost. But ultimately, being [able] to design better products pays off more.

HPCwire: What is the biggest challenge in performing aircraft simulations today? And how is it being addressed?

Dekkers: The challenges are multifold. First and most basic, the compatibility of the simulation software with the hardware architecture. This is why most companies prefer having multiple types of architectures to deal with multiple requirements.

The calibration of the simulation algorithm, its results, and its predictions with real-life also represents a challenge, especially for newer materials like carbon fiber. Here we ultimately have no other option than to validate through physical mockups.

Last but not least, linking both input and output of such a simulation cycle to the “right” aircraft configuration is not evident, that is, how do I make sure the calculations are based on the right digital mockup configuration and how can I assure that its results are reproducible for a very long time-frame?

HPCwire: Are there particular aspects of aircraft design that simulations are particularly good at optimizing?

Dekkers: Traditionally over three-fourths of our HPC capacities have been used for aerodynamic optimizations, which is not a surprise to anyone, I believe. However, we currently see a clear trend shifting its use toward multi-disciplinary design and optimization, aero-acoustics and system integration. This does not mean that the traditional area of using HPC is reducing its usage, but the other use cases simply seem to grow faster.

HPCwire: Can you tell us a little about Airbus’ FuSim program — what it’s about and what are the expectations?

Dekkers: FuSim is for Future Simulation concept. It is a strategic research & technology program launched in 2006 to drastically change the aerodynamic development process.

FuSim objectives are to develop innovative computer-based simulation systems to increase the capability of fluid mechanics design processes by up to a million times, leading to significantly reduced product development lead times, as well as enhanced product optimization through investigation of breakthrough technologies such as flow control. Needless to say, this requires endless computing capacity.

Progress achieved during first phase of Fusim from 2006 to 2011 demonstrated an overall 10^3 improvement in computational fluid dynamics efficiency versus its 2005 basis.

The next big step is Megasim, planned for 2015, which targets another 10^3 improvement in CFD efficiency versus today’s basis, that is, a 10^6 improvement in comparison to 2005.

HPCwire: How important are government and academic partnerships to Airbus and EADS?

Dekkers: Especially in the area of flight physics we have long-lasting partnerships with academic institutes and programs. In this area, I specifically would like to mention C2A2S2E in Germany, Mosart in France, CFMS in UK and DOVRES in Spain.

Our typical work with academia focuses on research methods — how to improve aerodynamics analysis and methods implementation and how to best apply them.

In addition to these initiatives we are looking at an EU funded project, called PRACE, which is federating HPC research infrastructure in Europe, in order to see how the aerospace industry can benefit from European petaflops computing capacity, and eventually access exaflops for the most challenging unsteady aerodynamics and multiphysics simulations.

HPCwire: Which new or upcoming HPC technologies and developments do you think will be most significant for the aerospace industry?

Dekkers: In the area of HPC environments, we will have to deal with the strong growth in I/O management and storage. Between 2008 and 2013, I/O volumes are growing from 5 GB/calculation to 5,000 GB/calculation, which all need to be transferred, stored and displayed. Also the visualization of such data volumes represents a true challenge, not only due to its sheer size but also by having to compress the meaningful data onto available display sizes.

Also handling the physical characteristics of such HPC environments are more and more challenging. Our 200 teraflops container solutions consume several hundred kilowatts in just a couple of cubic meters of space, and need to be cooled in an environmental-friendly way. Here we will certainly need even newer technologies then we have today.

Last but not least, I believe that the efficiency of high performance computing will depend at least as much on the exponential efficiency of the algorithms used, which I would expect to contribute in the same order-of-magnitude as the performance of HPC from hardware innovations. Code must clearly be further parallelized to take benefit from the new architectures — we today still have a lot of “old fashion” code on our systems — and needs to be continuously adapted to take maximum benefit of the newest processor technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Pfizer HPC Engineer Aims to Automate Software Stack Testing

January 17, 2019

Seeking to reign in the tediousness of manual software testing, Pfizer HPC Engineer Shahzeb Siddiqui is developing an open source software tool called buildtest, aimed at automating software stack testing by providing the community with a central repository of tests for common HPC apps and the ability to automate execution of testing. Read more…

By Tiffany Trader

Senegal Prepares to Take Delivery of Atos Supercomputer

January 16, 2019

In just a few months time, Senegal will be operating the second largest HPC system in sub-Saharan Africa. The Minister of Higher Education, Research and Innovation Mary Teuw Niane made the announcement... Read more…

By Tiffany Trader

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three big public cloud vendors has by turn touted the latest and Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Resource Management in the Age of Artificial Intelligence

New challenges demand fresh approaches

Fueled by GPUs, big data, and rapid advances in software, the AI revolution is upon us. Read more…

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchmark or suite of benchmarking tools to compare the performanc Read more…

By John Russell

Google Cloud Platform Extends GPU Instance Options

January 16, 2019

If it's Nvidia GPUs you're after to power your AI/HPC/visualization workload, Google Cloud has them, now claiming "broadest GPU availability." Each of the three Read more…

By Tiffany Trader

STAC Floats ML Benchmark for Financial Services Workloads

January 16, 2019

STAC (Securities Technology Analysis Center) recently released an ‘exploratory’ benchmark for machine learning which it hopes will evolve into a firm benchm Read more…

By John Russell

A Big Data Journey While Seeking to Catalog our Universe

January 16, 2019

It turns out, astronomers have lots of photos of the sky but seek knowledge about what the photos mean. Sound familiar? Big data problems are often characterize Read more…

By James Reinders

Intel Bets Big on 2-Track Quantum Strategy

January 15, 2019

Quantum computing has lived so long in the future it’s taken on a futuristic life of its own, with a Gartner-style hype cycle that includes triggers of innovation, inflated expectations and – though a useful quantum system is still years away – anticipatory troughs of disillusionment. Read more…

By Doug Black

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

IBM’s New Global Weather Forecasting System Runs on GPUs

January 9, 2019

Anyone who has checked a forecast to decide whether or not to pack an umbrella knows that weather prediction can be a mercurial endeavor. It is a Herculean task: the constant modeling of incredibly complex systems to a high degree of accuracy at a local level within very short spans of time. Read more…

By Oliver Peckham

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

HPE No. 1, IBM Surges, in ‘Bucking Bronco’ High Performance Server Market

September 27, 2018

Riding healthy U.S. and global economies, strong demand for AI-capable hardware and other tailwind trends, the high performance computing server market jumped 28 percent in the second quarter 2018 to $3.7 billion, up from $2.9 billion for the same period last year, according to industry analyst firm Hyperion Research. Read more…

By Doug Black

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

Germany Celebrates Launch of Two Fastest Supercomputers

September 26, 2018

The new high-performance computer SuperMUC-NG at the Leibniz Supercomputing Center (LRZ) in Garching is the fastest computer in Germany and one of the fastest i Read more…

By Tiffany Trader

Microsoft to Buy Mellanox?

December 20, 2018

Networking equipment powerhouse Mellanox could be an acquisition target by Microsoft, according to a published report in an Israeli financial publication. Microsoft has reportedly gone so far as to engage Goldman Sachs to handle negotiations with Mellanox. Read more…

By Doug Black

Houston to Field Massive, ‘Geophysically Configured’ Cloud Supercomputer

October 11, 2018

Based on some news stories out today, one might get the impression that the next system to crack number one on the Top500 would be an industrial oil and gas mon Read more…

By Tiffany Trader

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Summit Supercomputer is Already Making its Mark on Science

September 20, 2018

Summit, now the fastest supercomputer in the world, is quickly making its mark in science – five of the six finalists just announced for the prestigious 2018 Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This