Aircraft Simulations Push Computing to the Cutting Edge

By Nicole Hemsoth

January 26, 2012

Designing an aircraft is one of the more expensive endeavors in the manufacturing business. Complex engineering, strict safety regulations, and high levels of quality control, all conspire to make such development time consuming and labor intensive. It’s no surprise that large manufacturers like Boeing and Airbus have turned to computing, and especially high performance computing, to streamline the effort.

To get a sense of the current state of the art, we asked Guus Dekkers, CIO of EADS and Airbus, to shed some light on the computational challenges involved. In the interview that follows, Dekkers, who will be delivering the opening keynote on this subject at ISC’12 in Hamburg, Germany, explains how HPC is being applied to aircraft simulation today and what the future might bring.

HPCwire: Before coming to Airbus and EADS, you worked in the automotive industry. How do these industries differ in their need for, and use of, high performance computing?

Guus Dekkers: Due to the complexity of both the product and the development process, the aeronautics industry has the need to pre-load and virtualize its development process far more than is the case today in the automotive industry. Whereas in an automotive environment the number of prototypes built has been substantially reduced during the last decade, a new car model will nevertheless still see a substantial number of physical models being built. This compares to a handful of extremely expensive prototypes in the aeronautics industry, with only few — and costly! — capabilities to correct if needed.

Also the number of engineering domains in which advanced simulation is being used is far more substantial than in automotive. Because the aeronautics industry needs to address advanced technical challenges unknown to the automotive industry (ex: lightning stroke, ice accreditation prediction, calculation of dynamic loads during different flight phases, …), and also because the establishment of a physical mock-up is in the automotive industry at times the far easier and efficient way to take design decisions.

HPCwire: Is the use of HPC for aircraft simulations actually enabling engineers to come up with better, more complex designs or is its main benefit cost reduction, via the replacement of physical prototyping and testing?

Dekkers: I would say it is both. Today the engineers do no longer limit themselves to simulate an aircraft’s behavior as a static model, but use the availability of vast high performance computing power to calculate the optimal scenario under different, partially dynamic situations. This allows them to optimize important safety, environmental and performance criteria like fuel-burn, noise, aerodynamics optimizations and performance prediction for multiple scenario’s, which has been impossible in the current precision up until recently. This clearly allows us to design better aircraft.

Certainly, HPC simulation allows as well reducing physical testing — with especially reduced wind-tunnel testing — which helps to slice cost. But ultimately, being [able] to design better products pays off more.

HPCwire: What is the biggest challenge in performing aircraft simulations today? And how is it being addressed?

Dekkers: The challenges are multifold. First and most basic, the compatibility of the simulation software with the hardware architecture. This is why most companies prefer having multiple types of architectures to deal with multiple requirements.

The calibration of the simulation algorithm, its results, and its predictions with real-life also represents a challenge, especially for newer materials like carbon fiber. Here we ultimately have no other option than to validate through physical mockups.

Last but not least, linking both input and output of such a simulation cycle to the “right” aircraft configuration is not evident, that is, how do I make sure the calculations are based on the right digital mockup configuration and how can I assure that its results are reproducible for a very long time-frame?

HPCwire: Are there particular aspects of aircraft design that simulations are particularly good at optimizing?

Dekkers: Traditionally over three-fourths of our HPC capacities have been used for aerodynamic optimizations, which is not a surprise to anyone, I believe. However, we currently see a clear trend shifting its use toward multi-disciplinary design and optimization, aero-acoustics and system integration. This does not mean that the traditional area of using HPC is reducing its usage, but the other use cases simply seem to grow faster.

HPCwire: Can you tell us a little about Airbus’ FuSim program — what it’s about and what are the expectations?

Dekkers: FuSim is for Future Simulation concept. It is a strategic research & technology program launched in 2006 to drastically change the aerodynamic development process.

FuSim objectives are to develop innovative computer-based simulation systems to increase the capability of fluid mechanics design processes by up to a million times, leading to significantly reduced product development lead times, as well as enhanced product optimization through investigation of breakthrough technologies such as flow control. Needless to say, this requires endless computing capacity.

Progress achieved during first phase of Fusim from 2006 to 2011 demonstrated an overall 10^3 improvement in computational fluid dynamics efficiency versus its 2005 basis.

The next big step is Megasim, planned for 2015, which targets another 10^3 improvement in CFD efficiency versus today’s basis, that is, a 10^6 improvement in comparison to 2005.

HPCwire: How important are government and academic partnerships to Airbus and EADS?

Dekkers: Especially in the area of flight physics we have long-lasting partnerships with academic institutes and programs. In this area, I specifically would like to mention C2A2S2E in Germany, Mosart in France, CFMS in UK and DOVRES in Spain.

Our typical work with academia focuses on research methods — how to improve aerodynamics analysis and methods implementation and how to best apply them.

In addition to these initiatives we are looking at an EU funded project, called PRACE, which is federating HPC research infrastructure in Europe, in order to see how the aerospace industry can benefit from European petaflops computing capacity, and eventually access exaflops for the most challenging unsteady aerodynamics and multiphysics simulations.

HPCwire: Which new or upcoming HPC technologies and developments do you think will be most significant for the aerospace industry?

Dekkers: In the area of HPC environments, we will have to deal with the strong growth in I/O management and storage. Between 2008 and 2013, I/O volumes are growing from 5 GB/calculation to 5,000 GB/calculation, which all need to be transferred, stored and displayed. Also the visualization of such data volumes represents a true challenge, not only due to its sheer size but also by having to compress the meaningful data onto available display sizes.

Also handling the physical characteristics of such HPC environments are more and more challenging. Our 200 teraflops container solutions consume several hundred kilowatts in just a couple of cubic meters of space, and need to be cooled in an environmental-friendly way. Here we will certainly need even newer technologies then we have today.

Last but not least, I believe that the efficiency of high performance computing will depend at least as much on the exponential efficiency of the algorithms used, which I would expect to contribute in the same order-of-magnitude as the performance of HPC from hardware innovations. Code must clearly be further parallelized to take benefit from the new architectures — we today still have a lot of “old fashion” code on our systems — and needs to be continuously adapted to take maximum benefit of the newest processor technologies.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Researchers Use Supercomputing to Study Links Between Hurricanes and Climate Change

July 19, 2019

As climate change looms, researchers are scrambling to answer the question of how a warming planet will affect the frequency and severity of already-deadly hurricanes. Now, a team of researchers from the University of Il Read more…

By Oliver Peckham

San Diego Supercomputer Center to Welcome ‘Expanse’ Supercomputer in 2020

July 18, 2019

With a $10 million dollar award from the National Science Foundation, San Diego Supercomputer Center (SDSC) at the University of California San Diego is procuring a new supercomputer, called Expanse, to be deployed next Read more…

By Staff report

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts flight characteristics. However, modeling the complexities and su Read more…

By Rob Johnson

HPE Extreme Performance Solutions

Bring the Combined Power of HPC and AI to Your Business Transformation

A growing number of commercial businesses are implementing HPC solutions to derive actionable business insights, to run higher performance applications and to gain a competitive advantage. Read more…

IBM Accelerated Insights

Smarter Technology Revs Up Red Bull Racing

In 21st century business, companies that effectively leverage their information resources – thrive. As it turns out, the same is true in Formula One racing. Read more…

How Fast is Your Rubik Solver; This One’s Probably Faster

July 18, 2019

In the race to solve Rubik’s Cube, the time-to-finish keeps shrinking. This year Philipp Weyer from Germany won the 10th World Cube Association (WCA) Championship held in Melbourne, Australia, with a 6.74-second perfo Read more…

By John Russell

Informing Designs of Safer, More Efficient Aircraft with Exascale Computing

July 18, 2019

During the process of designing an aircraft, aeronautical engineers must perform predictive simulations to understand how airflow around the plane impacts fligh Read more…

By Rob Johnson

Intel Debuts Pohoiki Beach, Its 8M Neuron Neuromorphic Development System

July 17, 2019

Neuromorphic computing has received less fanfare of late than quantum computing whose mystery has captured public attention and which seems to have generated mo Read more…

By John Russell

Goonhilly Unveils New Immersion-Cooled Platform, Doubles Down on Sustainability Mission

July 16, 2019

Goonhilly Earth Station has opened its new datacenter – an enhancement to its existing tier 3 facility – in Cornwall, England, touting an ambitious commitme Read more…

By Oliver Peckham

ISC19 Cluster Competition: Application Results, Finally!

July 15, 2019

Our exhaustive coverage of the ISC19 Student Cluster Competition continues as we discuss the application scores below. While the scores were typically high, som Read more…

By Dan Olds

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Qualcomm Invests in RISC-V Startup SiFive

June 7, 2019

Investors are zeroing in on the open standard RISC-V instruction set architecture and the processor intellectual property being developed by a batch of high-flying chip startups. Last fall, Esperanto Technologies announced a $58 million funding round. Read more…

By George Leopold

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This