3D Torus Topology with InfiniBand at San Diego Supercomputing Center

By Nicole Hemsoth

January 30, 2012

The San Diego Supercomputing Center Gordon Supercomputer was built in response to a call from the National Science Foundation (NSF) to deploy a “data intensive” computer.     With this in mind, Gordon was designed for running data-intensive applications spanning domains such as genomics, graph problems, geophysics, and data mining. Scientific researches will include the analysis of individual genomes to tailor drugs to specific patients, the development of more accurate models to predict the impact of earthquakes on buildings and other structures, and simulations that offer greater insight into what’s happening to the planet’s climate.

CAPABILITIES OF THE GORDON SUPERCOMPUTER

The SDSC Gordon cluster is composed of over 1,000 compute nodes based on the Intel Xeon processor E5 family.   The supercomputer also employs a number of unique capabilities to provide the data-intensive applications it was built to run.   One of these features is very fast access to storage via 64 I/O nodes incorporating 300TB of high performance SSD flash-based memory connected over the InfiniBand fabric.  This flash memory will help speed access to storage that is traditionally limited by the slower spinning disk-based storage.      One benefit of this fast storage is to enable the manipulation of massive graphs that arise in many data-intensive fields, including bioinformatics, social networks and neuroscience. In these applications, large databases could be loaded into flash memory and queried with much lower latency than if they were resident on disk.

Each of these I/O nodes is capable of more than 560K IOPS, or 35M IOPS for the full system, making it what SDSC believes is the fastest supercomputer ever commissioned by the NSF in terms of I/O operations.   For comparison purposes, the flash storage is large enough to store the entire 100,000 Netflix movie catalog (and still have room to spare), and is fast enough to deliver more than 200 Netflix movies in a single second.  

Another concept unique to the Gordon cluster is the ‘Supernode’ architecture.    Each Gordon supernode consists of 32 HPC compute nodes and is capable of 240 GFLOPS/node and 64 GBof RAM per node.   Each supernode also incorporates 2 of the high speed I/O nodes detailed above.   When tied together by virtual shared memory, each of the system’s 32 supernodes has the potential of 7.7 TFLOP of compute power and 10 TB of memory.    An additional benefit of the cluster is the use of the supernodes are completely programmable, so the nodes can be allocated either as traditional HPC nodes, as supernodes, or as combinations of the two.  

A 3D TORUS TOPOLOGY

SDSC chose to deploy a 3D Torus topology for the Gordon fabric.   There are considerations to take into account when selecting between a 3D Torus and alternate topologies, but in some clusters there are key characteristics of a 3D Torus that make it a good choice.     When comparing the 3D Torus to other topologies, the most often considered alternative is a fat-tree topology, which is the most commonly used topology for InfiniBand fabrics today.    With a fat-tree topology, every node has equal access bandwidth to every other node in the cluster.   Fat-tree is a great topology for running large scale applications where nodes do a lot of communication with each other, e.g., large MPI jobs.   In contrast, a 3D Torus topology is best used for applications that use communications between localized compute nodes, as this locality is usually a requirement to achieve optimal performance with a torus.   Given the data intensive applications that are targeted for Gordon, and the nature of these applications where in many cases localization constraints within the application are employed, the 3D Torus architecture made sense from a performance perspective.  

There are additional advantages to be gained by using a 3D Torus topology that make it appealing for certain installations.   In general the cabling of the cluster can be simpler, and also shorter cables can be utilized to build the cluster.   This provides for a cost effective, power efficient and resilient design.    Also, if future expansion is a requirement, the 3D Torus can be added to with very little re-cabling necessary.   The ends of the torus are simply disconnected, servers are added, and then the torus is reconnected at the end points.

3D TORUS IMPLEMENTATION

To build their 3D Torus network, SDSC relied on InfiniBand hardware and software from Mellanox Technologies.    The 3D Torus was built using 36-port switch nodes in a 4x4x4 configuration, for a total of 64 torus junctions.   Each of these junctions connects to 16 compute nodes, and 2 IO nodes, with inter-node links using 3 switch ports in each of the +/- X, Y, and Z directions.   Utilizing 40Gb/s QDR technology, this delivers over 12 GB/s of bandwidth in each direction.    The cluster also employs a dual-rail technology, meaning two independent HCAs are populate in each server, and each HCA is connected to a separate 4x4x4 torus network.   This provides the applications double the throughput from a server, or over 7 GB/s injection rate into the network.  

 

 

Fig. 1   4x4x4 3D-Torus Logical Deployment Diagram

Mellanox used a unique algorithm called ‘Torus-2QOS’ to provide the packet routing configuration through the switching fabric.    This algorithm, originally developed at Sandia National Laboratories, is based on Direct Ordered Routing (DOR) routing principles, but has the unique capability of being able to handle the loop wiring nature of a torus, and to also provide a level of Quality of Service (QOS) within the torus.   QOS in important as it allows different traffic types, or service levels,  their own dedicated network resources that won’t interfere with traffic from other service levels.   This is especially useful in a cluster like Gordon, as the storage traffic from the IO nodes can run on their own service level from the compute traffic, giving each of these traffic types their own set of resources within the network where they won’t interfere with each other.    

The Torus-2QOS algorithm that was deployed also has many advanced features, including its level of resiliency.   The routing is setup in such a way that it can ‘self-heal’ and reroute around multiple cable failures as well as a complete switch failure.   This rerouting is done automatically by the subnet management entity that is managing the fabric, and is done independently and without the knowledge of the applications running over the fabric.  

While the details and interworking’s of the 3D Torus algorithm are beyond the scope of this article, from a simple conceptual view, separate ‘virtual fabric’ are employed in the switching network and used by the applications to avoid the credit loops discussed above.   For example, a dateline is drawn in each plane of the torus, and if the packets cross this dateline they run over a different ‘virtual fabric’ from packets that do not cross the dateline.    In this way, no loops are can be formed across the torus.  Applications need to be aware of the correct ‘virtual fabrics’ to use when communicating to another server.   Because InfiniBand uses a centralized management scheme, it is a rather straightforward process for the application to be given the ‘virtual fabric’ information from this centralized manager whenever setting up a connection to another server.    Since most applications use this mechanism anyways, no changes to the application were necessary to be able to use the 3D Torus.  

THE FUTURE OF 3D TORUS WITH INFINIBAND

The software that Mellanox deployed on the cluster is now industry standard and part of the open source community Open Fabric stack.   This includes the subnet management routing algorithms, the management tools, and the application support to run over a 3D Torus topology.   The San Diego Supercomputing Gordon cluster shows that it is feasible and practical to run a 3D Torus topology with InfiniBand.   It also shows the power and flexibility of InfiniBand to be able to run different topologies depending on the performance goals, architecture and cost targets of the supercomputer. 

http://www.mellanox.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network designed to emulate and compete with the human brain. In thi Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big data and artificial intelligence software to its top-of-the-l Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This