3D Torus Topology with InfiniBand at San Diego Supercomputing Center

By Nicole Hemsoth

January 30, 2012

The San Diego Supercomputing Center Gordon Supercomputer was built in response to a call from the National Science Foundation (NSF) to deploy a “data intensive” computer.     With this in mind, Gordon was designed for running data-intensive applications spanning domains such as genomics, graph problems, geophysics, and data mining. Scientific researches will include the analysis of individual genomes to tailor drugs to specific patients, the development of more accurate models to predict the impact of earthquakes on buildings and other structures, and simulations that offer greater insight into what’s happening to the planet’s climate.

CAPABILITIES OF THE GORDON SUPERCOMPUTER

The SDSC Gordon cluster is composed of over 1,000 compute nodes based on the Intel Xeon processor E5 family.   The supercomputer also employs a number of unique capabilities to provide the data-intensive applications it was built to run.   One of these features is very fast access to storage via 64 I/O nodes incorporating 300TB of high performance SSD flash-based memory connected over the InfiniBand fabric.  This flash memory will help speed access to storage that is traditionally limited by the slower spinning disk-based storage.      One benefit of this fast storage is to enable the manipulation of massive graphs that arise in many data-intensive fields, including bioinformatics, social networks and neuroscience. In these applications, large databases could be loaded into flash memory and queried with much lower latency than if they were resident on disk.

Each of these I/O nodes is capable of more than 560K IOPS, or 35M IOPS for the full system, making it what SDSC believes is the fastest supercomputer ever commissioned by the NSF in terms of I/O operations.   For comparison purposes, the flash storage is large enough to store the entire 100,000 Netflix movie catalog (and still have room to spare), and is fast enough to deliver more than 200 Netflix movies in a single second.  

Another concept unique to the Gordon cluster is the ‘Supernode’ architecture.    Each Gordon supernode consists of 32 HPC compute nodes and is capable of 240 GFLOPS/node and 64 GBof RAM per node.   Each supernode also incorporates 2 of the high speed I/O nodes detailed above.   When tied together by virtual shared memory, each of the system’s 32 supernodes has the potential of 7.7 TFLOP of compute power and 10 TB of memory.    An additional benefit of the cluster is the use of the supernodes are completely programmable, so the nodes can be allocated either as traditional HPC nodes, as supernodes, or as combinations of the two.  

A 3D TORUS TOPOLOGY

SDSC chose to deploy a 3D Torus topology for the Gordon fabric.   There are considerations to take into account when selecting between a 3D Torus and alternate topologies, but in some clusters there are key characteristics of a 3D Torus that make it a good choice.     When comparing the 3D Torus to other topologies, the most often considered alternative is a fat-tree topology, which is the most commonly used topology for InfiniBand fabrics today.    With a fat-tree topology, every node has equal access bandwidth to every other node in the cluster.   Fat-tree is a great topology for running large scale applications where nodes do a lot of communication with each other, e.g., large MPI jobs.   In contrast, a 3D Torus topology is best used for applications that use communications between localized compute nodes, as this locality is usually a requirement to achieve optimal performance with a torus.   Given the data intensive applications that are targeted for Gordon, and the nature of these applications where in many cases localization constraints within the application are employed, the 3D Torus architecture made sense from a performance perspective.  

There are additional advantages to be gained by using a 3D Torus topology that make it appealing for certain installations.   In general the cabling of the cluster can be simpler, and also shorter cables can be utilized to build the cluster.   This provides for a cost effective, power efficient and resilient design.    Also, if future expansion is a requirement, the 3D Torus can be added to with very little re-cabling necessary.   The ends of the torus are simply disconnected, servers are added, and then the torus is reconnected at the end points.

3D TORUS IMPLEMENTATION

To build their 3D Torus network, SDSC relied on InfiniBand hardware and software from Mellanox Technologies.    The 3D Torus was built using 36-port switch nodes in a 4x4x4 configuration, for a total of 64 torus junctions.   Each of these junctions connects to 16 compute nodes, and 2 IO nodes, with inter-node links using 3 switch ports in each of the +/- X, Y, and Z directions.   Utilizing 40Gb/s QDR technology, this delivers over 12 GB/s of bandwidth in each direction.    The cluster also employs a dual-rail technology, meaning two independent HCAs are populate in each server, and each HCA is connected to a separate 4x4x4 torus network.   This provides the applications double the throughput from a server, or over 7 GB/s injection rate into the network.  

 

 

Fig. 1   4x4x4 3D-Torus Logical Deployment Diagram

Mellanox used a unique algorithm called ‘Torus-2QOS’ to provide the packet routing configuration through the switching fabric.    This algorithm, originally developed at Sandia National Laboratories, is based on Direct Ordered Routing (DOR) routing principles, but has the unique capability of being able to handle the loop wiring nature of a torus, and to also provide a level of Quality of Service (QOS) within the torus.   QOS in important as it allows different traffic types, or service levels,  their own dedicated network resources that won’t interfere with traffic from other service levels.   This is especially useful in a cluster like Gordon, as the storage traffic from the IO nodes can run on their own service level from the compute traffic, giving each of these traffic types their own set of resources within the network where they won’t interfere with each other.    

The Torus-2QOS algorithm that was deployed also has many advanced features, including its level of resiliency.   The routing is setup in such a way that it can ‘self-heal’ and reroute around multiple cable failures as well as a complete switch failure.   This rerouting is done automatically by the subnet management entity that is managing the fabric, and is done independently and without the knowledge of the applications running over the fabric.  

While the details and interworking’s of the 3D Torus algorithm are beyond the scope of this article, from a simple conceptual view, separate ‘virtual fabric’ are employed in the switching network and used by the applications to avoid the credit loops discussed above.   For example, a dateline is drawn in each plane of the torus, and if the packets cross this dateline they run over a different ‘virtual fabric’ from packets that do not cross the dateline.    In this way, no loops are can be formed across the torus.  Applications need to be aware of the correct ‘virtual fabrics’ to use when communicating to another server.   Because InfiniBand uses a centralized management scheme, it is a rather straightforward process for the application to be given the ‘virtual fabric’ information from this centralized manager whenever setting up a connection to another server.    Since most applications use this mechanism anyways, no changes to the application were necessary to be able to use the 3D Torus.  

THE FUTURE OF 3D TORUS WITH INFINIBAND

The software that Mellanox deployed on the cluster is now industry standard and part of the open source community Open Fabric stack.   This includes the subnet management routing algorithms, the management tools, and the application support to run over a 3D Torus topology.   The San Diego Supercomputing Gordon cluster shows that it is feasible and practical to run a 3D Torus topology with InfiniBand.   It also shows the power and flexibility of InfiniBand to be able to run different topologies depending on the performance goals, architecture and cost targets of the supercomputer. 

http://www.mellanox.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

And So It Begins…Again – The FY19 Exascale Budget Rollout (and things look good)

February 23, 2018

On February 12, 2018, the Trump administration submitted its Fiscal Year 2019 (FY-19) budget to Congress. The good news for the U.S. exascale program is that the numbers look very good and the support appears to be stron Read more…

By Alex R. Larzelere

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with partner Leibniz Supercomputing Center (LRZ) in Germany. The ser Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and processing architectures that, if not optimized, will hamstrin Read more…

By Doug Black

HPE Extreme Performance Solutions

Experience Memory & Storage Solutions that will Transform Your Data Performance

High performance computing (HPC) has revolutionized the way we harness insight, leading to a dramatic increase in both the size and complexity of HPC systems. Read more…

Do Cryptocurrencies Have a Part to Play in HPC?

February 22, 2018

It’s easy to be distracted by news from the US, China, and now the EU on the state of various exascale projects, but behind the vinyl-wrapped cabinets and well-groomed sales execs are an army of Excel-wielding PMO and Read more…

By Chris Downing

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Start-up Aims AI at Automated Tuning of Complex Systems

February 22, 2018

Today’s bigger, more complex, connected and intelligent systems have an exponentially higher number of connections, dependencies, interfaces, protocols and pr Read more…

By Doug Black

HOKUSAI’s BigWaterfall Cluster Extends RIKEN’s Supercomputing Performance

February 21, 2018

RIKEN, Japan’s largest comprehensive research institution, recently expanded the capacity and capabilities of its HOKUSAI supercomputer, a key resource manage Read more…

By Ken Strandberg

Neural Networking Shows Promise in Earthquake Monitoring

February 21, 2018

A team of Harvard University and MIT researchers report their new neural networking method for monitoring earthquakes is more accurate and orders of magnitude faster than traditional approaches. Read more…

By John Russell

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Fluid HPC: How Extreme-Scale Computing Should Respond to Meltdown and Spectre

February 15, 2018

The Meltdown and Spectre vulnerabilities are proving difficult to fix, and initial experiments suggest security patches will cause significant performance penal Read more…

By Pete Beckman

Brookhaven Ramps Up Computing for National Security Effort

February 14, 2018

Last week, Dan Coats, the director of Director of National Intelligence for the U.S., warned the Senate Intelligence Committee that Russia was likely to meddle in the 2018 mid-term U.S. elections, much as it stands accused of doing in the 2016 Presidential election. Read more…

By John Russell

AI Cloud Competition Heats Up: Google’s TPUs, Amazon Building AI Chip

February 12, 2018

Competition in the white hot AI (and public cloud) market pits Google against Amazon this week, with Google offering AI hardware on its cloud platform intended Read more…

By Doug Black

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Russian Nuclear Engineers Caught Cryptomining on Lab Supercomputer

February 12, 2018

Nuclear scientists working at the All-Russian Research Institute of Experimental Physics (RFNC-VNIIEF) have been arrested for using lab supercomputing resources to mine crypto-currency, according to a report in Russia’s Interfax News Agency. Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

V100 Good but not Great on Select Deep Learning Aps, Says Xcelerit

November 27, 2017

Wringing optimum performance from hardware to accelerate deep learning applications is a challenge that often depends on the specific application in use. A benc Read more…

By John Russell

SC17: Singularity Preps Version 3.0, Nears 1M Containers Served Daily

November 1, 2017

Just a few months ago about half a million jobs were being run daily using Singularity containers, the LBNL-founded container platform intended for HPC. That wa Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This