3D Torus Topology with InfiniBand at San Diego Supercomputing Center

By Nicole Hemsoth

January 30, 2012

The San Diego Supercomputing Center Gordon Supercomputer was built in response to a call from the National Science Foundation (NSF) to deploy a “data intensive” computer.     With this in mind, Gordon was designed for running data-intensive applications spanning domains such as genomics, graph problems, geophysics, and data mining. Scientific researches will include the analysis of individual genomes to tailor drugs to specific patients, the development of more accurate models to predict the impact of earthquakes on buildings and other structures, and simulations that offer greater insight into what’s happening to the planet’s climate.

CAPABILITIES OF THE GORDON SUPERCOMPUTER

The SDSC Gordon cluster is composed of over 1,000 compute nodes based on the Intel Xeon processor E5 family.   The supercomputer also employs a number of unique capabilities to provide the data-intensive applications it was built to run.   One of these features is very fast access to storage via 64 I/O nodes incorporating 300TB of high performance SSD flash-based memory connected over the InfiniBand fabric.  This flash memory will help speed access to storage that is traditionally limited by the slower spinning disk-based storage.      One benefit of this fast storage is to enable the manipulation of massive graphs that arise in many data-intensive fields, including bioinformatics, social networks and neuroscience. In these applications, large databases could be loaded into flash memory and queried with much lower latency than if they were resident on disk.

Each of these I/O nodes is capable of more than 560K IOPS, or 35M IOPS for the full system, making it what SDSC believes is the fastest supercomputer ever commissioned by the NSF in terms of I/O operations.   For comparison purposes, the flash storage is large enough to store the entire 100,000 Netflix movie catalog (and still have room to spare), and is fast enough to deliver more than 200 Netflix movies in a single second.  

Another concept unique to the Gordon cluster is the ‘Supernode’ architecture.    Each Gordon supernode consists of 32 HPC compute nodes and is capable of 240 GFLOPS/node and 64 GBof RAM per node.   Each supernode also incorporates 2 of the high speed I/O nodes detailed above.   When tied together by virtual shared memory, each of the system’s 32 supernodes has the potential of 7.7 TFLOP of compute power and 10 TB of memory.    An additional benefit of the cluster is the use of the supernodes are completely programmable, so the nodes can be allocated either as traditional HPC nodes, as supernodes, or as combinations of the two.  

A 3D TORUS TOPOLOGY

SDSC chose to deploy a 3D Torus topology for the Gordon fabric.   There are considerations to take into account when selecting between a 3D Torus and alternate topologies, but in some clusters there are key characteristics of a 3D Torus that make it a good choice.     When comparing the 3D Torus to other topologies, the most often considered alternative is a fat-tree topology, which is the most commonly used topology for InfiniBand fabrics today.    With a fat-tree topology, every node has equal access bandwidth to every other node in the cluster.   Fat-tree is a great topology for running large scale applications where nodes do a lot of communication with each other, e.g., large MPI jobs.   In contrast, a 3D Torus topology is best used for applications that use communications between localized compute nodes, as this locality is usually a requirement to achieve optimal performance with a torus.   Given the data intensive applications that are targeted for Gordon, and the nature of these applications where in many cases localization constraints within the application are employed, the 3D Torus architecture made sense from a performance perspective.  

There are additional advantages to be gained by using a 3D Torus topology that make it appealing for certain installations.   In general the cabling of the cluster can be simpler, and also shorter cables can be utilized to build the cluster.   This provides for a cost effective, power efficient and resilient design.    Also, if future expansion is a requirement, the 3D Torus can be added to with very little re-cabling necessary.   The ends of the torus are simply disconnected, servers are added, and then the torus is reconnected at the end points.

3D TORUS IMPLEMENTATION

To build their 3D Torus network, SDSC relied on InfiniBand hardware and software from Mellanox Technologies.    The 3D Torus was built using 36-port switch nodes in a 4x4x4 configuration, for a total of 64 torus junctions.   Each of these junctions connects to 16 compute nodes, and 2 IO nodes, with inter-node links using 3 switch ports in each of the +/- X, Y, and Z directions.   Utilizing 40Gb/s QDR technology, this delivers over 12 GB/s of bandwidth in each direction.    The cluster also employs a dual-rail technology, meaning two independent HCAs are populate in each server, and each HCA is connected to a separate 4x4x4 torus network.   This provides the applications double the throughput from a server, or over 7 GB/s injection rate into the network.  

 

 

Fig. 1   4x4x4 3D-Torus Logical Deployment Diagram

Mellanox used a unique algorithm called ‘Torus-2QOS’ to provide the packet routing configuration through the switching fabric.    This algorithm, originally developed at Sandia National Laboratories, is based on Direct Ordered Routing (DOR) routing principles, but has the unique capability of being able to handle the loop wiring nature of a torus, and to also provide a level of Quality of Service (QOS) within the torus.   QOS in important as it allows different traffic types, or service levels,  their own dedicated network resources that won’t interfere with traffic from other service levels.   This is especially useful in a cluster like Gordon, as the storage traffic from the IO nodes can run on their own service level from the compute traffic, giving each of these traffic types their own set of resources within the network where they won’t interfere with each other.    

The Torus-2QOS algorithm that was deployed also has many advanced features, including its level of resiliency.   The routing is setup in such a way that it can ‘self-heal’ and reroute around multiple cable failures as well as a complete switch failure.   This rerouting is done automatically by the subnet management entity that is managing the fabric, and is done independently and without the knowledge of the applications running over the fabric.  

While the details and interworking’s of the 3D Torus algorithm are beyond the scope of this article, from a simple conceptual view, separate ‘virtual fabric’ are employed in the switching network and used by the applications to avoid the credit loops discussed above.   For example, a dateline is drawn in each plane of the torus, and if the packets cross this dateline they run over a different ‘virtual fabric’ from packets that do not cross the dateline.    In this way, no loops are can be formed across the torus.  Applications need to be aware of the correct ‘virtual fabrics’ to use when communicating to another server.   Because InfiniBand uses a centralized management scheme, it is a rather straightforward process for the application to be given the ‘virtual fabric’ information from this centralized manager whenever setting up a connection to another server.    Since most applications use this mechanism anyways, no changes to the application were necessary to be able to use the 3D Torus.  

THE FUTURE OF 3D TORUS WITH INFINIBAND

The software that Mellanox deployed on the cluster is now industry standard and part of the open source community Open Fabric stack.   This includes the subnet management routing algorithms, the management tools, and the application support to run over a 3D Torus topology.   The San Diego Supercomputing Gordon cluster shows that it is feasible and practical to run a 3D Torus topology with InfiniBand.   It also shows the power and flexibility of InfiniBand to be able to run different topologies depending on the performance goals, architecture and cost targets of the supercomputer. 

http://www.mellanox.com

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This