Learning from Clouds Past: A Look Back at Magellan

By Tiffany Trader

February 1, 2012

In 2009, the US Department of Energy (DOE) launched a bold experiment, a $32 million program to assess the benefit of cloud computing to the scientific community. A distributed testbed infrastructure, named Magellan, was established at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC) to provide a tool for computational science in a cloud environment. Magellan, with funding from the American Recovery and Reinvestment Act, was to help major research organizations answer the classic cloud question: is it better to rent or buy?

“What we’re exploring is the question of whether the DOE or other government agencies should be buying their own clusters … or whether those kinds of purchases should be done in a more consolidated way,” said NERSC Director Kathy Yelick in a previous article.

Despite high-hopes and community support, in late 2011, we learned that the Magellan project was being discontinued, leaving many wondering what happened. Now we have some answers in the form of a 169-page report, sponsored by the Department of Energy’s Office of Advanced Scientific Computing Research (ASCR), which funded the study to assess what Magellan tells us about the the role of cloud computing for scientific applications.

Since industry was already benefiting from the cloud model, from the economies of scale generated by a shared pool of network-accessible resources, the Magellan team members initially set out to determine if cloud would hold the same potential for science. As stated in the executive summary:

The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid-range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost.

Specifically, Magellan was tasked with addressing the following questions:

  • Are the open source cloud software stacks ready for DOE HPC science?
  • Can DOE cyber security requirements be met within a cloud?
  • Are the new cloud programming models useful for scientific computing?
  • Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds?
  • How usable are cloud environments for scientific applications?
  • When is it cost effective to run DOE HPC science in a cloud?

It should be noted that Magellan was not a typical commercial cloud, rather this “science cloud” was purpose-built for the special requirements of scientific computing. Magellan was based on the IBM iDataplex chassis using Intel processor cores for a theoretical peak performance of over 100 teraflop/s. Other components include:

  • High bandwidth, low-latency node interconnects (InfiniBand).
  • High-bin processors tuned for performance.
  • Preinstalled scientific applications, compilers, debuggers, math libraries and other tools.
  • High-bandwidth parallel file system.
  • High-capacity data archive.

During Magellan’s two-year run, the staff at NERSC and Argonne National Laboratory examined how different aspects of cloud computing infrastructure and technologies could be harnessed by various scientific applications. They evaluated cloud models such as Infrastructure as a Service (IaaS) and Platform as a Service (Paas), virtual software stacks, MapReduce and open-source implementation (Hadoop), as well as resource provider and user perspectives.

Using a wide-range of applications as benchmarks, the researchers compared the Magellan cloud with various other architectures, including a Cray XT4 supercomputer, a Dell cluster system, and Amazon’s EC2 commercial cloud offering. Despite the testbed moniker, a lot of important production science took place, contributing to advances in particle physics, climate research, quantum chemistry, plasma physics and astrophysics.

Science workloads, by their nature, tend to be cloud-challenged, although to varying degrees. The report outlines the three major classifications of computational models, beginning with large-scale tightly-coupled science codes, which require the power of traditional supercomputers and take a big penalty working in a virtualized cloud environment. Then, there are the mid-range tightly-coupled applications, which run at a smaller scale and tend to be good candidates for cloud, although there is some performance loss. The final category, high-throughput workloads, usually involve asynchronous, independent computations, and in the past relied on desktop and small clusters for processing. But due to an explosion in sensor data, cloud is a good fit, especially when you factor in the fact that these high-throughput and data-intensive workloads do not fit into current scheduling and allocation policies.

The two-year Magellan project led to these key findings:

  • Scientific applications have special requirements that require cloud solutions that are tailored to these needs.
  • Scientific applications with minimal communication and I/O are best suited for clouds.
  • Clouds require significant programming and system administration support.
  • Significant gaps and challenges exist in current open-source virtualized cloud software stacks for production science use.
  • Clouds expose a different risk model requiring different security practices and policies.
  • MapReduce shows promise in addressing scientific needs, but current implementations have gaps and challenges.
  • Public clouds can be more expensive than in-house large systems. Many of the cost benefits from clouds result from the increased consolidation and higher average utilization.
  • DOE supercomputing centers already achieve energy efficiency levels comparable to commercial cloud centers.
  • Cloud is a business model and can be applied at DOE supercomputing centers.

From this list, it is apparent that cloud was unable to measure up to a centralized supercomputer system in many ways, but the delivery model does have its place. According to the report, “users with applications that have more dynamic or interactive needs could benefit from on-demand, self-service environments and rapid elasticity through the use of virtualization technology, and the MapReduce programming model to manage loosely coupled application runs.”

In other words, cloud excels when it comes to flexibility and responsiveness. In fact, the report found that “for users who need the added flexibility offered by the cloud computing model, additional costs may be more than offset by the increased flexibility. Furthermore, in some cases the potential for more immediate access to compute resources could directly translate into cost savings.”

However, when it comes to the potential cost savings of using a public cloud versus the costs of hardware acquisition, the report makes the point that DOE procurement costs are often significantly discounted, which offsets some of the potential savings:

Existing DOE centers already achieve many of the benefits of cloud computing since these centers consolidate computing across multiple program offices, deploy at large scales, and continuously refine and improve operational efficiency. Cost analysis shows that DOE centers are cost competitive, typically 3-7x less expensive, when compared to commercial cloud providers. Because the commercial sector constantly innovates, DOE labs and centers should continue to benchmark their computing cost against public clouds to ensure they are providing a competitive service.

“Cloud computing is ultimately a business model,” state the authors. “But cloud models often provide additional capabilities and flexibility that are helpful to certain workloads. DOE labs and centers should consider adopting and integrating these features of cloud computing into their operations in order to support more diverse workloads and further enable scientific discovery, without sacrificing the productivity and effectiveness of computing platforms that have been optimized for science over decades of development and refinement.”

The authors further suggest that when an integrated approach is not sufficient, a private cloud solution should be considered based on its ability to provide many of the benefits of commercial clouds while avoiding some of the pitfalls, such as security, data management, and performance penalties.

To recap: cloud services are a good complement to centralized computing resources, but not a replacement. This should not come as a surprise to our community. This is HPC, high-performance computing, and whenever you add additional layers, i.e., virtualization, the application takes a performance hit. However, as the report makes clear, there are good use cases for cloud services, such as “scientific groups needing support for on-demand access to resources, sudden surges in resource needs, customized environments, periodic predictable resource needs (e.g., monthly processing of genome data, nightly processing of telescope data), or unpredictable events such as computing for disaster recovery.” The report goes on to note that “cloud services essentially provide a differentiated service model that can cater to these diverse needs, allowing users to get a virtual private cluster with a certain guaranteed level of service.”

Magellan was billed as an exploratory project, set to go for two years. In fact, the project was named Magellan in honor of the Portuguese explorer Fernão de Magalhães, the first person to lead an expedition across the Pacific. The original “clouds of Magellan” refers to two small galaxies in the southern sky. The current-day Magellan, as the first major scientific cloud testbed, also navigated uncharted waters and documented the journey for the benefit of future generations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “global” launch event in Austin TX. In many ways it was a fu Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it, analysts and journalists want to report on it. Deep learni Read more…

By Doug Black

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff members, and new support by key HPC applications providers, Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major shakeups -- China still has the top two spots locked with th Read more…

By Tiffany Trader

ISC: Extreme-Scale Requirements to Push the Frontiers of Deep Learning

June 17, 2017

Deep learning is the latest and most compelling technology strategy to take aim at the decades-old “drowning in data/starving for insight” problem. But contrary to the commonly held notion, deep learning is more than Read more…

By Doug Black

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD, Cray, Hewlett Packard Enterprise (HPE), IBM, Intel, and NV Read more…

By John Russell

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Hyperion: Deep Learning, AI Helping Drive Healthy HPC Industry Growth

June 20, 2017

To be at the ISC conference in Frankfurt this week is to experience deep immersion in deep learning. Users want to learn about it, vendors want to talk about it Read more…

By Doug Black

OpenACC Shows Growing Strength at ISC

June 19, 2017

OpenACC is strutting its stuff at ISC this year touting expanding membership, a jump in downloads, favorable benchmarks across several architectures, new staff Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

ISC: Extreme-Scale Requirements to Push the Frontiers of Deep Learning

June 17, 2017

Deep learning is the latest and most compelling technology strategy to take aim at the decades-old “drowning in data/starving for insight” problem. But cont Read more…

By Doug Black

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Knights Landing Processor with Omni-Path Makes Cloud Debut

April 18, 2017

HPC cloud specialist Rescale is partnering with Intel and HPC resource provider R Systems to offer first-ever cloud access to Xeon Phi "Knights Landing" processors. The infrastructure is based on the 68-core Intel Knights Landing processor with integrated Omni-Path fabric (the 7250F Xeon Phi). Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This