Learning from Clouds Past: A Look Back at Magellan

By Tiffany Trader

February 1, 2012

In 2009, the US Department of Energy (DOE) launched a bold experiment, a $32 million program to assess the benefit of cloud computing to the scientific community. A distributed testbed infrastructure, named Magellan, was established at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC) to provide a tool for computational science in a cloud environment. Magellan, with funding from the American Recovery and Reinvestment Act, was to help major research organizations answer the classic cloud question: is it better to rent or buy?

“What we’re exploring is the question of whether the DOE or other government agencies should be buying their own clusters … or whether those kinds of purchases should be done in a more consolidated way,” said NERSC Director Kathy Yelick in a previous article.

Despite high-hopes and community support, in late 2011, we learned that the Magellan project was being discontinued, leaving many wondering what happened. Now we have some answers in the form of a 169-page report, sponsored by the Department of Energy’s Office of Advanced Scientific Computing Research (ASCR), which funded the study to assess what Magellan tells us about the the role of cloud computing for scientific applications.

Since industry was already benefiting from the cloud model, from the economies of scale generated by a shared pool of network-accessible resources, the Magellan team members initially set out to determine if cloud would hold the same potential for science. As stated in the executive summary:

The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid-range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost.

Specifically, Magellan was tasked with addressing the following questions:

  • Are the open source cloud software stacks ready for DOE HPC science?
  • Can DOE cyber security requirements be met within a cloud?
  • Are the new cloud programming models useful for scientific computing?
  • Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds?
  • How usable are cloud environments for scientific applications?
  • When is it cost effective to run DOE HPC science in a cloud?

It should be noted that Magellan was not a typical commercial cloud, rather this “science cloud” was purpose-built for the special requirements of scientific computing. Magellan was based on the IBM iDataplex chassis using Intel processor cores for a theoretical peak performance of over 100 teraflop/s. Other components include:

  • High bandwidth, low-latency node interconnects (InfiniBand).
  • High-bin processors tuned for performance.
  • Preinstalled scientific applications, compilers, debuggers, math libraries and other tools.
  • High-bandwidth parallel file system.
  • High-capacity data archive.

During Magellan’s two-year run, the staff at NERSC and Argonne National Laboratory examined how different aspects of cloud computing infrastructure and technologies could be harnessed by various scientific applications. They evaluated cloud models such as Infrastructure as a Service (IaaS) and Platform as a Service (Paas), virtual software stacks, MapReduce and open-source implementation (Hadoop), as well as resource provider and user perspectives.

Using a wide-range of applications as benchmarks, the researchers compared the Magellan cloud with various other architectures, including a Cray XT4 supercomputer, a Dell cluster system, and Amazon’s EC2 commercial cloud offering. Despite the testbed moniker, a lot of important production science took place, contributing to advances in particle physics, climate research, quantum chemistry, plasma physics and astrophysics.

Science workloads, by their nature, tend to be cloud-challenged, although to varying degrees. The report outlines the three major classifications of computational models, beginning with large-scale tightly-coupled science codes, which require the power of traditional supercomputers and take a big penalty working in a virtualized cloud environment. Then, there are the mid-range tightly-coupled applications, which run at a smaller scale and tend to be good candidates for cloud, although there is some performance loss. The final category, high-throughput workloads, usually involve asynchronous, independent computations, and in the past relied on desktop and small clusters for processing. But due to an explosion in sensor data, cloud is a good fit, especially when you factor in the fact that these high-throughput and data-intensive workloads do not fit into current scheduling and allocation policies.

The two-year Magellan project led to these key findings:

  • Scientific applications have special requirements that require cloud solutions that are tailored to these needs.
  • Scientific applications with minimal communication and I/O are best suited for clouds.
  • Clouds require significant programming and system administration support.
  • Significant gaps and challenges exist in current open-source virtualized cloud software stacks for production science use.
  • Clouds expose a different risk model requiring different security practices and policies.
  • MapReduce shows promise in addressing scientific needs, but current implementations have gaps and challenges.
  • Public clouds can be more expensive than in-house large systems. Many of the cost benefits from clouds result from the increased consolidation and higher average utilization.
  • DOE supercomputing centers already achieve energy efficiency levels comparable to commercial cloud centers.
  • Cloud is a business model and can be applied at DOE supercomputing centers.

From this list, it is apparent that cloud was unable to measure up to a centralized supercomputer system in many ways, but the delivery model does have its place. According to the report, “users with applications that have more dynamic or interactive needs could benefit from on-demand, self-service environments and rapid elasticity through the use of virtualization technology, and the MapReduce programming model to manage loosely coupled application runs.”

In other words, cloud excels when it comes to flexibility and responsiveness. In fact, the report found that “for users who need the added flexibility offered by the cloud computing model, additional costs may be more than offset by the increased flexibility. Furthermore, in some cases the potential for more immediate access to compute resources could directly translate into cost savings.”

However, when it comes to the potential cost savings of using a public cloud versus the costs of hardware acquisition, the report makes the point that DOE procurement costs are often significantly discounted, which offsets some of the potential savings:

Existing DOE centers already achieve many of the benefits of cloud computing since these centers consolidate computing across multiple program offices, deploy at large scales, and continuously refine and improve operational efficiency. Cost analysis shows that DOE centers are cost competitive, typically 3-7x less expensive, when compared to commercial cloud providers. Because the commercial sector constantly innovates, DOE labs and centers should continue to benchmark their computing cost against public clouds to ensure they are providing a competitive service.

“Cloud computing is ultimately a business model,” state the authors. “But cloud models often provide additional capabilities and flexibility that are helpful to certain workloads. DOE labs and centers should consider adopting and integrating these features of cloud computing into their operations in order to support more diverse workloads and further enable scientific discovery, without sacrificing the productivity and effectiveness of computing platforms that have been optimized for science over decades of development and refinement.”

The authors further suggest that when an integrated approach is not sufficient, a private cloud solution should be considered based on its ability to provide many of the benefits of commercial clouds while avoiding some of the pitfalls, such as security, data management, and performance penalties.

To recap: cloud services are a good complement to centralized computing resources, but not a replacement. This should not come as a surprise to our community. This is HPC, high-performance computing, and whenever you add additional layers, i.e., virtualization, the application takes a performance hit. However, as the report makes clear, there are good use cases for cloud services, such as “scientific groups needing support for on-demand access to resources, sudden surges in resource needs, customized environments, periodic predictable resource needs (e.g., monthly processing of genome data, nightly processing of telescope data), or unpredictable events such as computing for disaster recovery.” The report goes on to note that “cloud services essentially provide a differentiated service model that can cater to these diverse needs, allowing users to get a virtual private cluster with a certain guaranteed level of service.”

Magellan was billed as an exploratory project, set to go for two years. In fact, the project was named Magellan in honor of the Portuguese explorer Fernão de Magalhães, the first person to lead an expedition across the Pacific. The original “clouds of Magellan” refers to two small galaxies in the southern sky. The current-day Magellan, as the first major scientific cloud testbed, also navigated uncharted waters and documented the journey for the benefit of future generations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement on at least one thing: the power consumption and latency pen Read more…

By Doug Black

Geospatial Data Research Leverages GPUs

August 17, 2017

MapD Technologies, the GPU-accelerated database specialist, said it is working with university researchers on leveraging graphics processors to advance geospatial analytics. The San Francisco-based company is collabor Read more…

By George Leopold

Intel, NERSC and University Partners Launch New Big Data Center

August 17, 2017

A collaboration between the Department of Energy’s National Energy Research Scientific Computing Center (NERSC), Intel and five Intel Parallel Computing Centers (IPCCs) has resulted in a new Big Data Center (BDC) that Read more…

By Linda Barney

HPE Extreme Performance Solutions

Leveraging Deep Learning for Fraud Detection

Advancements in computing technologies and the expanding use of e-commerce platforms have dramatically increased the risk of fraud for financial services companies and their customers. Read more…

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last week the cloud giant released deeplearn.js as part of that in Read more…

By John Russell

Tech Giants Outline Battle Plans for Future HPC Market

August 21, 2017

Four companies engaged in a cage fight for leadership in the emerging HPC market of the 2020s are, despite deep differences in some areas, in violent agreement Read more…

By Doug Black

Microsoft Bolsters Azure With Cloud HPC Deal

August 15, 2017

Microsoft has acquired cloud computing software vendor Cycle Computing in a move designed to bring orchestration tools along with high-end computing access capabilities to the cloud. Terms of the acquisition were not disclosed. Read more…

By George Leopold

HPE Ships Supercomputer to Space Station, Final Destination Mars

August 14, 2017

With a manned mission to Mars on the horizon, the demand for space-based supercomputing is at hand. Today HPE and NASA sent the first off-the-shelf HPC system i Read more…

By Tiffany Trader

AMD EPYC Video Takes Aim at Intel’s Broadwell

August 14, 2017

Let the benchmarking begin. Last week, AMD posted a YouTube video in which one of its EPYC-based systems outperformed a ‘comparable’ Intel Broadwell-based s Read more…

By John Russell

Deep Learning Thrives in Cancer Moonshot

August 8, 2017

The U.S. War on Cancer, certainly a worthy cause, is a collection of programs stretching back more than 40 years and abiding under many banners. The latest is t Read more…

By John Russell

IBM Raises the Bar for Distributed Deep Learning

August 8, 2017

IBM is announcing today an enhancement to its PowerAI software platform aimed at facilitating the practical scaling of AI models on today’s fastest GPUs. Scal Read more…

By Tiffany Trader

IBM Storage Breakthrough Paves Way for 330TB Tape Cartridges

August 3, 2017

IBM announced yesterday a new record for magnetic tape storage that it says will keep tape storage density on a Moore's law-like path far into the next decade. Read more…

By Tiffany Trader

AMD Stuffs a Petaflops of Machine Intelligence into 20-Node Rack

August 1, 2017

With its Radeon “Vega” Instinct datacenter GPUs and EPYC “Naples” server chips entering the market this summer, AMD has positioned itself for a two-head Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Leading Solution Providers

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

Top500 Results: Latest List Trends and What’s in Store

June 19, 2017

Greetings from Frankfurt and the 2017 International Supercomputing Conference where the latest Top500 list has just been revealed. Although there were no major Read more…

By Tiffany Trader

IBM Clears Path to 5nm with Silicon Nanosheets

June 5, 2017

Two years since announcing the industry’s first 7nm node test chip, IBM and its research alliance partners GlobalFoundries and Samsung have developed a proces Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This