Learning from Clouds Past: A Look Back at Magellan

By Tiffany Trader

February 1, 2012

In 2009, the US Department of Energy (DOE) launched a bold experiment, a $32 million program to assess the benefit of cloud computing to the scientific community. A distributed testbed infrastructure, named Magellan, was established at the Argonne Leadership Computing Facility (ALCF) and the National Energy Research Scientific Computing Center (NERSC) to provide a tool for computational science in a cloud environment. Magellan, with funding from the American Recovery and Reinvestment Act, was to help major research organizations answer the classic cloud question: is it better to rent or buy?

“What we’re exploring is the question of whether the DOE or other government agencies should be buying their own clusters … or whether those kinds of purchases should be done in a more consolidated way,” said NERSC Director Kathy Yelick in a previous article.

Despite high-hopes and community support, in late 2011, we learned that the Magellan project was being discontinued, leaving many wondering what happened. Now we have some answers in the form of a 169-page report, sponsored by the Department of Energy’s Office of Advanced Scientific Computing Research (ASCR), which funded the study to assess what Magellan tells us about the the role of cloud computing for scientific applications.

Since industry was already benefiting from the cloud model, from the economies of scale generated by a shared pool of network-accessible resources, the Magellan team members initially set out to determine if cloud would hold the same potential for science. As stated in the executive summary:

The goal of Magellan, a project funded through the U.S. Department of Energy (DOE) Office of Advanced Scientific Computing Research (ASCR), was to investigate the potential role of cloud computing in addressing the computing needs for the DOE Office of Science (SC), particularly related to serving the needs of mid-range computing and future data-intensive computing workloads. A set of research questions was formed to probe various aspects of cloud computing from performance, usability, and cost.

Specifically, Magellan was tasked with addressing the following questions:

  • Are the open source cloud software stacks ready for DOE HPC science?
  • Can DOE cyber security requirements be met within a cloud?
  • Are the new cloud programming models useful for scientific computing?
  • Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds?
  • How usable are cloud environments for scientific applications?
  • When is it cost effective to run DOE HPC science in a cloud?

It should be noted that Magellan was not a typical commercial cloud, rather this “science cloud” was purpose-built for the special requirements of scientific computing. Magellan was based on the IBM iDataplex chassis using Intel processor cores for a theoretical peak performance of over 100 teraflop/s. Other components include:

  • High bandwidth, low-latency node interconnects (InfiniBand).
  • High-bin processors tuned for performance.
  • Preinstalled scientific applications, compilers, debuggers, math libraries and other tools.
  • High-bandwidth parallel file system.
  • High-capacity data archive.

During Magellan’s two-year run, the staff at NERSC and Argonne National Laboratory examined how different aspects of cloud computing infrastructure and technologies could be harnessed by various scientific applications. They evaluated cloud models such as Infrastructure as a Service (IaaS) and Platform as a Service (Paas), virtual software stacks, MapReduce and open-source implementation (Hadoop), as well as resource provider and user perspectives.

Using a wide-range of applications as benchmarks, the researchers compared the Magellan cloud with various other architectures, including a Cray XT4 supercomputer, a Dell cluster system, and Amazon’s EC2 commercial cloud offering. Despite the testbed moniker, a lot of important production science took place, contributing to advances in particle physics, climate research, quantum chemistry, plasma physics and astrophysics.

Science workloads, by their nature, tend to be cloud-challenged, although to varying degrees. The report outlines the three major classifications of computational models, beginning with large-scale tightly-coupled science codes, which require the power of traditional supercomputers and take a big penalty working in a virtualized cloud environment. Then, there are the mid-range tightly-coupled applications, which run at a smaller scale and tend to be good candidates for cloud, although there is some performance loss. The final category, high-throughput workloads, usually involve asynchronous, independent computations, and in the past relied on desktop and small clusters for processing. But due to an explosion in sensor data, cloud is a good fit, especially when you factor in the fact that these high-throughput and data-intensive workloads do not fit into current scheduling and allocation policies.

The two-year Magellan project led to these key findings:

  • Scientific applications have special requirements that require cloud solutions that are tailored to these needs.
  • Scientific applications with minimal communication and I/O are best suited for clouds.
  • Clouds require significant programming and system administration support.
  • Significant gaps and challenges exist in current open-source virtualized cloud software stacks for production science use.
  • Clouds expose a different risk model requiring different security practices and policies.
  • MapReduce shows promise in addressing scientific needs, but current implementations have gaps and challenges.
  • Public clouds can be more expensive than in-house large systems. Many of the cost benefits from clouds result from the increased consolidation and higher average utilization.
  • DOE supercomputing centers already achieve energy efficiency levels comparable to commercial cloud centers.
  • Cloud is a business model and can be applied at DOE supercomputing centers.

From this list, it is apparent that cloud was unable to measure up to a centralized supercomputer system in many ways, but the delivery model does have its place. According to the report, “users with applications that have more dynamic or interactive needs could benefit from on-demand, self-service environments and rapid elasticity through the use of virtualization technology, and the MapReduce programming model to manage loosely coupled application runs.”

In other words, cloud excels when it comes to flexibility and responsiveness. In fact, the report found that “for users who need the added flexibility offered by the cloud computing model, additional costs may be more than offset by the increased flexibility. Furthermore, in some cases the potential for more immediate access to compute resources could directly translate into cost savings.”

However, when it comes to the potential cost savings of using a public cloud versus the costs of hardware acquisition, the report makes the point that DOE procurement costs are often significantly discounted, which offsets some of the potential savings:

Existing DOE centers already achieve many of the benefits of cloud computing since these centers consolidate computing across multiple program offices, deploy at large scales, and continuously refine and improve operational efficiency. Cost analysis shows that DOE centers are cost competitive, typically 3-7x less expensive, when compared to commercial cloud providers. Because the commercial sector constantly innovates, DOE labs and centers should continue to benchmark their computing cost against public clouds to ensure they are providing a competitive service.

“Cloud computing is ultimately a business model,” state the authors. “But cloud models often provide additional capabilities and flexibility that are helpful to certain workloads. DOE labs and centers should consider adopting and integrating these features of cloud computing into their operations in order to support more diverse workloads and further enable scientific discovery, without sacrificing the productivity and effectiveness of computing platforms that have been optimized for science over decades of development and refinement.”

The authors further suggest that when an integrated approach is not sufficient, a private cloud solution should be considered based on its ability to provide many of the benefits of commercial clouds while avoiding some of the pitfalls, such as security, data management, and performance penalties.

To recap: cloud services are a good complement to centralized computing resources, but not a replacement. This should not come as a surprise to our community. This is HPC, high-performance computing, and whenever you add additional layers, i.e., virtualization, the application takes a performance hit. However, as the report makes clear, there are good use cases for cloud services, such as “scientific groups needing support for on-demand access to resources, sudden surges in resource needs, customized environments, periodic predictable resource needs (e.g., monthly processing of genome data, nightly processing of telescope data), or unpredictable events such as computing for disaster recovery.” The report goes on to note that “cloud services essentially provide a differentiated service model that can cater to these diverse needs, allowing users to get a virtual private cluster with a certain guaranteed level of service.”

Magellan was billed as an exploratory project, set to go for two years. In fact, the project was named Magellan in honor of the Portuguese explorer Fernão de Magalhães, the first person to lead an expedition across the Pacific. The original “clouds of Magellan” refers to two small galaxies in the southern sky. The current-day Magellan, as the first major scientific cloud testbed, also navigated uncharted waters and documented the journey for the benefit of future generations.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Hedge Funds (with Supercomputing help) Rank First Among Investors

May 22, 2017

In case you didn’t know, The Quants Run Wall Street Now, or so says a headline in today’s Wall Street Journal. Quant-run hedge funds now control the largest Read more…

By John Russell

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Exploring the Three Models of Remote Visualization

The explosion of data and advancement of digital technologies are dramatically changing the way many companies do business. With the help of high performance computing (HPC) solutions and data analytics platforms, manufacturers are developing products faster, healthcare providers are improving patient care, and energy companies are improving planning, exploration, and production. Read more…

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn't made the task of parallel progr Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This