SeaMicro Launches High-End Microserver

By Michael Feldman

February 1, 2012

Server maker SeaMicro has unveiled the SM10000-XE, a new microserver aimed squarely at the burgeoning ultra-scale datacenter market. The company is best known for pioneering the microserver space using Intel’s power-sipping Atom CPUs, but in this latest offering, SeaMicro has opted for high powered, low-wattage Sandy Bridge Xeons, which expands the application horizons of microservers considerably.

Microservers were originally invented to drastically shrink the power and space associated with large-scale computing. Up until now though, microservers have been powered by relatively low performance processors, such as the Atom CPU and 32-bit ARM chips. By necessity, that meant the application set was limited to light-weight workloads that could be highly parallelized, such as web serving and batch analytics.

With the addition of low-wattage but more performant Xeons into the mix, SeaMicro is looking to expand the microserver business into what it calls “brawny applications.” That includes more traditional enterprise workloads like Java, PHP, MemCacheD, and NoSQL, as well as web-based database processing. SeaMicro CEO Andrew Feldman characterized the new Xeon-powered SM10000-XE as the “the mainstreaming of the microserver.”

The SM10000-XE, which lists for $138,000, is a chassis that houses 64 single-socket compute nodes. Each node consists of a 45W quad-core Xeon (E3-1260L) and up to 32 GB of Samsung’s power-efficient DRAM (1.35V, 30nm process technology). A SATA slot is available for an optional hard disk or SSD and Ethernet uplinks of either the GigE or 10GigE variety are available to connect the box to the outside world.

The microserver nodes are strung together in a 3D torus with SeaMicro’s high bandwidth, low latency “Freedom Supercompute Fabric.” It provide a whopping 10 GigE bandwidth to each socket — 1.28 terabits across the whole chassis. As such, it replaces around 1,000 GigE switches, which saves hundreds of thousands of dollars in up-front cost, as well as substantial energy costs over the system’s lifetime.

The 64-node chassis fits in a 10U form factor and draws a modest 3.5 KW. According to Feldman that’s about three times the density and one half the power of competing x86 solutions. And thanks to the interprocessor fabric, the CPUs have access to 12 times the external bandwidth of a conventional server. Feldman says 20 of these SM10000-XE chassis have enough computational muscle to run Amazon’s entire web e-retail business. “This is quite simply the most efficient Xeon server ever built,” he claims.

Such density is achieved with the help of SeaMicro’s own Freedom ASIC, the technology that distinguishes the company’s microserver from its competitors. The ASIC encapsulates not only the Freedom fabric interconnect, but also I/O virtualization logic which SeaMicro says replaces 90 percent of the motherboard components, including external I/O and network interface chips. Also included on the ASIC is something called TIO (Turn It Off), which can shut down unused logic blocks on the CPU, further reducing the power draw.

Because of all this consolidation, only three components remain on the motherboard: the CPU (plus CPU chipset), the DRAM chips, and SeaMicro’s ASIC. The entire chipset fits onto an 11-by-5.5-inch card, but that doesn’t include a SATA drive or SSD if the customer opts for such storage.

Although Feldman claims that the SM10000-XE will propel the microserver into “every nook and cranny of the scale-out datacenter,” at no time did he mention high performance computing, an application area that also becoming space and power limited. But many embarrassing parallel applications, scientific or otherwise, are actually well suited to this architecture. That’s assuming the code can be sliced up in such a way that its memory requirements per node don’t exceed the relatively modest 32GB limit. Unfortunately, there is no cache coherency across nodes.

Applications fitting this profile would be things like genomic analysis, certain types of seismic analysis, large-scale image rendering, and all sorts of scientific data mining. The fact that the low latency Freedom fabric can feed each CPU with 10GigE (2.5 gigabits/second per core) suggests MPI-based applications should fare rather well on this architecture.

Keep in mind that the low-wattage Xeon E3-1260L used in the SM10000-XE provides quite respectable performance. Since the chip is part of the Sandy Bridge family, it supports the new AVX floating point instructions, which means each core can execute 8 double precision FP instructions per clock cycle. So at 2.4GHz, the quad-core E3-1260L delivers a peak performance of 76.8 gigaflops (4.9 teraflops for the entire chassis). That works out to about 1400 megaflops/watt, which could place an SM10000-XE system in the top ten of the latest Green500 list.

The nice thing about the SeaMicro fabric and I/O virtualization technology is that it is designed to be chip agnostic. The ease which the company can do that is enabled by hooking the fabric into the standard PCIe interface on the host processor. If other low-power processors come along (think 64-bit ARM), SeaMicro should be able to build microservers around those chips in fairly short order.

Because the Xeon is the mainstream chip in commercial clusters today, SeaMicro intends to sell more of these boxes than they did with their Atom-based offerings. Even without the SM10000-XE though, the company has been doing “phenomenal,” according to Feldman.  Although he didn’t offer how much revenue his company collected during their first year of business (2011), Feldman says it was more than the combined sales of Riverbed, 3PAR, Aruba Networks and Data Domain combined during their first year. “It looks pretty bright out there right now,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

ExxonMobil, NCSA, Cray Scale Reservoir Simulation to 700,000+ Processors

February 17, 2017

In a scaling breakthrough for oil and gas discovery, ExxonMobil geoscientists report they have harnessed the power of 717,000 processors – the equivalent of 22,000 32-processor computers – to run complex oil and gas reservoir simulation models. Read more…

By Doug Black

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

O&G Companies Create Value with High Performance Remote Visualization

Today’s oil and gas (O&G) companies are striving to process datasets that have become not only tremendously large, but extremely complex. And the larger that data becomes, the harder it is to move and analyze it – particularly with a workforce that could be distributed between drilling sites, offshore rigs, and remote offices. Read more…

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Weekly Twitter Roundup (Feb. 16, 2017)

February 16, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Alexander Named Dep. Dir. of Brookhaven Computational Initiative

February 15, 2017

Francis Alexander, a physicist with extensive management and leadership experience in computational science research, has been named Deputy Director of the Computational Science Initiative at the U.S. Read more…

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

IDC: Will the Real Exascale Race Please Stand Up?

February 21, 2017

So the exascale race is on. And lots of organizations are in the pack. Government announcements from the US, China, India, Japan, and the EU indicate that they are working hard to make it happen – some sooner, some later. Read more…

By Bob Sorensen, IDC

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

Drug Developers Use Google Cloud HPC in the Fight Against ALS

February 16, 2017

Within the haystack of a lethal disease such as ALS (amyotrophic lateral sclerosis / Lou Gehrig’s Disease) there exists, somewhere, the needle that will pierce this therapy-resistant affliction. Read more…

By Doug Black

Azure Edges AWS in Linpack Benchmark Study

February 15, 2017

The “when will clouds be ready for HPC” question has ebbed and flowed for years. Read more…

By John Russell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Cray Posts Best-Ever Quarter, Visibility Still Limited

February 10, 2017

On its Wednesday earnings call, Cray announced the largest revenue quarter in the company’s history and the second-highest revenue year. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Leading Solution Providers

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

What Knights Landing Is Not

June 18, 2016

As we get ready to launch the newest member of the Intel Xeon Phi family, code named Knights Landing, it is natural that there be some questions and potentially some confusion. Read more…

By James Reinders, Intel

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This