SeaMicro Launches High-End Microserver

By Michael Feldman

February 1, 2012

Server maker SeaMicro has unveiled the SM10000-XE, a new microserver aimed squarely at the burgeoning ultra-scale datacenter market. The company is best known for pioneering the microserver space using Intel’s power-sipping Atom CPUs, but in this latest offering, SeaMicro has opted for high powered, low-wattage Sandy Bridge Xeons, which expands the application horizons of microservers considerably.

Microservers were originally invented to drastically shrink the power and space associated with large-scale computing. Up until now though, microservers have been powered by relatively low performance processors, such as the Atom CPU and 32-bit ARM chips. By necessity, that meant the application set was limited to light-weight workloads that could be highly parallelized, such as web serving and batch analytics.

With the addition of low-wattage but more performant Xeons into the mix, SeaMicro is looking to expand the microserver business into what it calls “brawny applications.” That includes more traditional enterprise workloads like Java, PHP, MemCacheD, and NoSQL, as well as web-based database processing. SeaMicro CEO Andrew Feldman characterized the new Xeon-powered SM10000-XE as the “the mainstreaming of the microserver.”

The SM10000-XE, which lists for $138,000, is a chassis that houses 64 single-socket compute nodes. Each node consists of a 45W quad-core Xeon (E3-1260L) and up to 32 GB of Samsung’s power-efficient DRAM (1.35V, 30nm process technology). A SATA slot is available for an optional hard disk or SSD and Ethernet uplinks of either the GigE or 10GigE variety are available to connect the box to the outside world.

The microserver nodes are strung together in a 3D torus with SeaMicro’s high bandwidth, low latency “Freedom Supercompute Fabric.” It provide a whopping 10 GigE bandwidth to each socket — 1.28 terabits across the whole chassis. As such, it replaces around 1,000 GigE switches, which saves hundreds of thousands of dollars in up-front cost, as well as substantial energy costs over the system’s lifetime.

The 64-node chassis fits in a 10U form factor and draws a modest 3.5 KW. According to Feldman that’s about three times the density and one half the power of competing x86 solutions. And thanks to the interprocessor fabric, the CPUs have access to 12 times the external bandwidth of a conventional server. Feldman says 20 of these SM10000-XE chassis have enough computational muscle to run Amazon’s entire web e-retail business. “This is quite simply the most efficient Xeon server ever built,” he claims.

Such density is achieved with the help of SeaMicro’s own Freedom ASIC, the technology that distinguishes the company’s microserver from its competitors. The ASIC encapsulates not only the Freedom fabric interconnect, but also I/O virtualization logic which SeaMicro says replaces 90 percent of the motherboard components, including external I/O and network interface chips. Also included on the ASIC is something called TIO (Turn It Off), which can shut down unused logic blocks on the CPU, further reducing the power draw.

Because of all this consolidation, only three components remain on the motherboard: the CPU (plus CPU chipset), the DRAM chips, and SeaMicro’s ASIC. The entire chipset fits onto an 11-by-5.5-inch card, but that doesn’t include a SATA drive or SSD if the customer opts for such storage.

Although Feldman claims that the SM10000-XE will propel the microserver into “every nook and cranny of the scale-out datacenter,” at no time did he mention high performance computing, an application area that also becoming space and power limited. But many embarrassing parallel applications, scientific or otherwise, are actually well suited to this architecture. That’s assuming the code can be sliced up in such a way that its memory requirements per node don’t exceed the relatively modest 32GB limit. Unfortunately, there is no cache coherency across nodes.

Applications fitting this profile would be things like genomic analysis, certain types of seismic analysis, large-scale image rendering, and all sorts of scientific data mining. The fact that the low latency Freedom fabric can feed each CPU with 10GigE (2.5 gigabits/second per core) suggests MPI-based applications should fare rather well on this architecture.

Keep in mind that the low-wattage Xeon E3-1260L used in the SM10000-XE provides quite respectable performance. Since the chip is part of the Sandy Bridge family, it supports the new AVX floating point instructions, which means each core can execute 8 double precision FP instructions per clock cycle. So at 2.4GHz, the quad-core E3-1260L delivers a peak performance of 76.8 gigaflops (4.9 teraflops for the entire chassis). That works out to about 1400 megaflops/watt, which could place an SM10000-XE system in the top ten of the latest Green500 list.

The nice thing about the SeaMicro fabric and I/O virtualization technology is that it is designed to be chip agnostic. The ease which the company can do that is enabled by hooking the fabric into the standard PCIe interface on the host processor. If other low-power processors come along (think 64-bit ARM), SeaMicro should be able to build microservers around those chips in fairly short order.

Because the Xeon is the mainstream chip in commercial clusters today, SeaMicro intends to sell more of these boxes than they did with their Atom-based offerings. Even without the SM10000-XE though, the company has been doing “phenomenal,” according to Feldman.  Although he didn’t offer how much revenue his company collected during their first year of business (2011), Feldman says it was more than the combined sales of Riverbed, 3PAR, Aruba Networks and Data Domain combined during their first year. “It looks pretty bright out there right now,” he says.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. The news follows HPE’s acquisition nearly three years ago o Read more…

By Doug Black & Tiffany Trader

China Establishes Seventh National Supercomputing Center

May 16, 2019

Chinese media is reporting that China will construct a new National Supercomputer Center in Zhengzhou, in central China's Henan Province. The new Zhengzhou facility will house a 100-petaflops supercomputer and will be ta Read more…

By Staff report

Interview with 2019 Person to Watch Ken King

May 16, 2019

Today, as the final installment of our HPCwire People to Watch focus series, we present our interview with Ken King, general manager of OpenPOWER for the IBM Systems Group. Ken is responsible for building and managing t Read more…

By HPCwire Editorial Team

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

Autonomous Vehicles: New challenges for the CAE Data Center

Managing infrastructure complexity in the age of AI

When most of us hear the term autonomous vehicles, we conjure up images of driverless Waymos or robotic transport trucks driving long-haul highway routes. Read more…

What’s New in HPC Research: Image Classification, Crowd Computing, Genome Informatics & More

May 15, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

HPE to Acquire Cray for $1.3B

May 17, 2019

Venerable supercomputer pioneer Cray Inc. will be acquired by Hewlett Packard Enterprise for $1.3 billion under a definitive agreement announced this morning. T Read more…

By Doug Black & Tiffany Trader

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

CCC Offers Draft 20-Year AI Roadmap; Seeks Comments

May 14, 2019

Artificial Intelligence in all its guises has captured much of the conversation in HPC and general computing today. The White House, DARPA, IARPA, and Departmen Read more…

By John Russell

Cascade Lake Shows Up to 84 Percent Gen-on-Gen Advantage on STAC Benchmarking

May 13, 2019

The Securities Technology Analysis Center (STAC) issued a report Friday comparing the performance of Intel's Cascade Lake processors with previous-gen Skylake u Read more…

By Tiffany Trader

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

ASC19: NTHU Returns to Glory

May 11, 2019

As many of you Student Cluster Competition fanatics know by now, Taiwan’s National Tsing Hua University (NTHU) won the gold medal at the recently concluded AS Read more…

By Dan Olds

Intel 7nm GPU on Roadmap for 2021, OneAPI Coming This Year

May 8, 2019

At Intel's investor meeting today in Santa Clara, Calif., the company filled in details of its roadmap and product launch plans and sought to allay concerns about delays of its 10nm chips. In laying out its 10nm and 7nm timelines, Intel revealed that its first 7nm product would be... Read more…

By Tiffany Trader

Ten Great Reasons to Build the 1.5 Exaflops Frontier

May 7, 2019

It’s perhaps obvious that the fundamental reason for building expensive exascale computers is to drive science and industry forward, realizing the resulting b Read more…

By John Russell

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Arm Unveils Neoverse N1 Platform with up to 128-Cores

February 20, 2019

Following on its Neoverse roadmap announcement last October, Arm today revealed its next-gen Neoverse microarchitecture with compute and throughput-optimized si Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

France to Deploy AI-Focused Supercomputer: Jean Zay

January 22, 2019

HPE announced today that it won the contract to build a supercomputer that will drive France’s AI and HPC efforts. The computer will be part of GENCI, the Fre Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

Nvidia Claims 6000x Speed-Up for Stock Trading Backtest Benchmark

May 13, 2019

A stock trading backtesting algorithm used by hedge funds to simulate trading variants has received a massive, GPU-based performance boost, according to Nvidia, Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This