Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

By Gary Johnson

February 2, 2012

In the world of high performance computing, there are three distinct metrics in play: number crunching speed; data crunching speed; and energy efficiency. Can a computer excel at all three, or is our best recourse to try for something less than a hat trick?

An abundance of metrics

In the past, number crunching ruled HPC. The measure was LINPACK, the metric was FLOPS (floating point operations per second) and the list was the TOP500.  Currently, data crunching has soared in importance and visibility and is arguably on par with number crunching. The measure here is an evolving set of kernels from graph algorithms, the metric is TEPS (traversed edges per second) and the list is the Graph 500

Simultaneously, the previously unconstrained race to the top is being supplanted by a new form of competition – one constrained by electrical power. Hence the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. 

The explicit constraint, introduced as a design goal for an exaflop computer, is one exaflop/20 MW or 50 gigaflops per watt. The computer currently at the top of the Green500 list operates at slightly over two gigaflops per watt. So, the 20 MW design goal is quite ambitious. However, it has now brought energy efficiency to the forefront of HPC. It’s not just for tree huggers anymore.

Loneliness at the top

The top of each of these lists is a lonely place and an expensive one to inhabit. Most machines will never attain it, but this is the realm where a lot of innovation happens. If only a few machines can reach the summit, then one probably can’t afford to have them be highly effective on only a small set of applications.  The cost is simply too great. Other opportunities for research investments would probably outcompete a narrowly targeted machine.

So it seems that at the top end of HPC, we are now seeking energy efficient computers that perform well at both number and data crunching. Can we get all three? Let’s take a look at the current state of the art.

Graph-Top-Green 500 list comparisons

The current version of the TOP500 list cites energy efficiencies for a large number of its entries, while the Green500 list provides energy efficiencies for all of its entries. Meanwhile, the Graph 500 list is still very much a work in progress. The current version contains only 49 distinct computers and does not provide any mapping of these to either the TOP500 or the Green500 list. Nonetheless, it is possible to locate at least 19 Graph 500 computers on the other two lists. So we can make at least a partial comparison of these lists, the results of which are shown below.

The machine nicknames used are self-explanatory, except possibly for “NSQP2” which refers to the NNSA-Office of Science BlueGene/Q Prototype II. The machines are listed in the order of their average ranking across all three lists.

Some obvious conclusions may be drawn:

  • Tsubame is the clear overall winner.
  • A couple of machines show a reasonable balance over all three metrics – Tsubame and Gordon
  • If one picks Top & Green, Tsubame and Gordon are still the best.
  • For Graph & Green, NSQP2 wins, Tsubame is a close second, and Endeavor-W, Endeavor-S and Gordon look pretty good.
  • For the choice Graph & Top, there are surprisingly many good choices, including: Tsubame, Hopper, Intrepid, Jaguar, Jaguar PF, Kraken, Kraken-F, Lomonosov, Franklin, Lonestar and Red Sky.

The top five of the TOP500

Note that three of the top five TOP500 computers are missing from the comparison: K Computer (#1); Tianhe-1A (#2); and Nebulae (#4). This is because they’re not currently included in the Graph 500 list.  Jaguar (#3) and Tsubame (#5) are present. If the missing machines are added, the comparison looks like this:

The only comparison now possible is Top & Green.  As is shown above, Tsubame still wins. However the three new entries all score higher than Gordon.

Can one machine have it all?

Based on the limited sampling used here, it appears that the answer is yes. Tsubame is leading the way.  Kudos to Prof. Satoshi Matsuoka and his team at the Tokyo Institute of Technology’s Global Scientific Information and Computing Center (GSIC). It will be interesting to see if this conclusion remains true as we move along the path to exascale.

Secret sauce

Those curious about Tsubame’s secret sauce may consult the Tsubame2 System Architecture information on the GSIC website. Here’s a brief extract:

TSUBAME2 is a production supercomputer operated by Global Scientific Information and Computing Center (GSIC), Tokyo Institute of Technology in cooperation with our industrial partners, including NEC, HP, NVIDIA, Microsoft, Voltaire among others. Since Fall 2010, it has been one of the fastest and greenest supercomputers in the world, boasting 2.4 PFlops peak performance by aggressive GPU acceleration, which allows scientists to enjoy significantly faster, larger computing than ever. This is the second instantiation of our TSUBAME-series supercomputers with the first being, as you might guess, TSUBAME1. It also employed various cutting-edge HPC acceleration technologies, such as ClearSpeed and NVIDIA GPUs, where we had learned many important technical lessons that eventually played a crucial role in designing and constructing our latest supercomputer. Compared to its predecessor, TSUBAME2, while keeping its power consumption nearly the same as before, achieves 30x performance boost by inheriting and further enhancing the successful architectural designs.

Key architectural points cited are:

  • Extended usage of GPU accelerators
  • Much improved intra- and inter-node bandwidths
  • Petascale high-bandwidth shared storage
  • Ultra-fast local storage (SSD)

What about number Crunching versus data crunching?

Another noteworthy observation from the Graph & Top comparisons is that there are quite a few computers that seem reasonably well balanced for a mix of both number crunching and data crunching tasks. The conventional wisdom is that number crunching and data crunching take advantage of significantly different computer attributes and that a single computer architecture may not work well for both kinds of tasks.  The limited sampling used here appears to contradict that view.

Caveats

As previously mentioned, the Graph 500 list is a work in progress. As it matures and as the list expands to encompass more machines, the conclusions presented here could change.

In the comparisons made here, equal weight has been given to the importance of placement on each of the lists. If one assigns different weights, the conclusions may change. However, it appears that any “reasonable” set of weightings would yield substantially the same conclusions.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This