Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

By Gary Johnson

February 2, 2012

In the world of high performance computing, there are three distinct metrics in play: number crunching speed; data crunching speed; and energy efficiency. Can a computer excel at all three, or is our best recourse to try for something less than a hat trick?

An abundance of metrics

In the past, number crunching ruled HPC. The measure was LINPACK, the metric was FLOPS (floating point operations per second) and the list was the TOP500.  Currently, data crunching has soared in importance and visibility and is arguably on par with number crunching. The measure here is an evolving set of kernels from graph algorithms, the metric is TEPS (traversed edges per second) and the list is the Graph 500

Simultaneously, the previously unconstrained race to the top is being supplanted by a new form of competition – one constrained by electrical power. Hence the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. 

The explicit constraint, introduced as a design goal for an exaflop computer, is one exaflop/20 MW or 50 gigaflops per watt. The computer currently at the top of the Green500 list operates at slightly over two gigaflops per watt. So, the 20 MW design goal is quite ambitious. However, it has now brought energy efficiency to the forefront of HPC. It’s not just for tree huggers anymore.

Loneliness at the top

The top of each of these lists is a lonely place and an expensive one to inhabit. Most machines will never attain it, but this is the realm where a lot of innovation happens. If only a few machines can reach the summit, then one probably can’t afford to have them be highly effective on only a small set of applications.  The cost is simply too great. Other opportunities for research investments would probably outcompete a narrowly targeted machine.

So it seems that at the top end of HPC, we are now seeking energy efficient computers that perform well at both number and data crunching. Can we get all three? Let’s take a look at the current state of the art.

Graph-Top-Green 500 list comparisons

The current version of the TOP500 list cites energy efficiencies for a large number of its entries, while the Green500 list provides energy efficiencies for all of its entries. Meanwhile, the Graph 500 list is still very much a work in progress. The current version contains only 49 distinct computers and does not provide any mapping of these to either the TOP500 or the Green500 list. Nonetheless, it is possible to locate at least 19 Graph 500 computers on the other two lists. So we can make at least a partial comparison of these lists, the results of which are shown below.

The machine nicknames used are self-explanatory, except possibly for “NSQP2” which refers to the NNSA-Office of Science BlueGene/Q Prototype II. The machines are listed in the order of their average ranking across all three lists.

Some obvious conclusions may be drawn:

  • Tsubame is the clear overall winner.
  • A couple of machines show a reasonable balance over all three metrics – Tsubame and Gordon
  • If one picks Top & Green, Tsubame and Gordon are still the best.
  • For Graph & Green, NSQP2 wins, Tsubame is a close second, and Endeavor-W, Endeavor-S and Gordon look pretty good.
  • For the choice Graph & Top, there are surprisingly many good choices, including: Tsubame, Hopper, Intrepid, Jaguar, Jaguar PF, Kraken, Kraken-F, Lomonosov, Franklin, Lonestar and Red Sky.

The top five of the TOP500

Note that three of the top five TOP500 computers are missing from the comparison: K Computer (#1); Tianhe-1A (#2); and Nebulae (#4). This is because they’re not currently included in the Graph 500 list.  Jaguar (#3) and Tsubame (#5) are present. If the missing machines are added, the comparison looks like this:

The only comparison now possible is Top & Green.  As is shown above, Tsubame still wins. However the three new entries all score higher than Gordon.

Can one machine have it all?

Based on the limited sampling used here, it appears that the answer is yes. Tsubame is leading the way.  Kudos to Prof. Satoshi Matsuoka and his team at the Tokyo Institute of Technology’s Global Scientific Information and Computing Center (GSIC). It will be interesting to see if this conclusion remains true as we move along the path to exascale.

Secret sauce

Those curious about Tsubame’s secret sauce may consult the Tsubame2 System Architecture information on the GSIC website. Here’s a brief extract:

TSUBAME2 is a production supercomputer operated by Global Scientific Information and Computing Center (GSIC), Tokyo Institute of Technology in cooperation with our industrial partners, including NEC, HP, NVIDIA, Microsoft, Voltaire among others. Since Fall 2010, it has been one of the fastest and greenest supercomputers in the world, boasting 2.4 PFlops peak performance by aggressive GPU acceleration, which allows scientists to enjoy significantly faster, larger computing than ever. This is the second instantiation of our TSUBAME-series supercomputers with the first being, as you might guess, TSUBAME1. It also employed various cutting-edge HPC acceleration technologies, such as ClearSpeed and NVIDIA GPUs, where we had learned many important technical lessons that eventually played a crucial role in designing and constructing our latest supercomputer. Compared to its predecessor, TSUBAME2, while keeping its power consumption nearly the same as before, achieves 30x performance boost by inheriting and further enhancing the successful architectural designs.

Key architectural points cited are:

  • Extended usage of GPU accelerators
  • Much improved intra- and inter-node bandwidths
  • Petascale high-bandwidth shared storage
  • Ultra-fast local storage (SSD)

What about number Crunching versus data crunching?

Another noteworthy observation from the Graph & Top comparisons is that there are quite a few computers that seem reasonably well balanced for a mix of both number crunching and data crunching tasks. The conventional wisdom is that number crunching and data crunching take advantage of significantly different computer attributes and that a single computer architecture may not work well for both kinds of tasks.  The limited sampling used here appears to contradict that view.

Caveats

As previously mentioned, the Graph 500 list is a work in progress. As it matures and as the list expands to encompass more machines, the conclusions presented here could change.

In the comparisons made here, equal weight has been given to the importance of placement on each of the lists. If one assigns different weights, the conclusions may change. However, it appears that any “reasonable” set of weightings would yield substantially the same conclusions.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

World Cup is Lame Compared to This Competition

June 18, 2018

So you think World Cup soccer is a big deal? While I’m sure it’s very compelling to watch a bunch of athletes kick a ball around, World Cup misses the boat because it doesn’t include teams putting together their ow Read more…

By Dan Olds

IBM Demonstrates Deep Neural Network Training with Analog Memory Devices

June 18, 2018

From smarter, more personalized apps to seemingly-ubiquitous Google Assistant and Alexa devices, AI adoption is showing no signs of slowing down – and yet, the hardware used for AI is far from perfect. Currently, GPUs Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPC and AI Convergence is Accelerating New Levels of Intelligence

Data analytics is the most valuable tool in the digital marketplace – so much so that organizations are employing high performance computing (HPC) capabilities to rapidly collect, share, and analyze endless streams of data. Read more…

IBM Accelerated Insights

Banks Boost Infrastructure to Tackle GDPR

As banks become more digital and data-driven, their IT managers are challenged with fast growing data volumes and lines-of-businesses’ (LoBs’) seemingly limitless appetite for analytics. Read more…

Challenges Face Astroinformatics as It Sorts Through the Stars

June 15, 2018

You might have seen one of those YouTube videos: they begin on Earth, slowly zooming out to the Moon, the Solar System, the Milky Way, beyond – and suddenly, you’re looking at trillions of stars. It’s a lot to take Read more…

By Oliver Peckham

Sandia to Take Delivery of World’s Largest Arm System

June 18, 2018

While the enterprise remains circumspect on prospects for Arm servers in the datacenter, the leadership HPC community is taking a bolder, brighter view of the x86 server CPU alternative. Amongst current and planned Arm HPC installations – i.e., the innovative Mont-Blanc project, led by Bull/Atos, the 'Isambard’ Cray XC50 going into the University of Bristol, and commitments from both Japan and France among others -- HPE is announcing that it will be supply the United States National Nuclear Security Administration (NNSA) with a 2.3 petaflops peak Arm-based system, named Astra. Read more…

By Tiffany Trader

The Machine Learning Hype Cycle and HPC

June 14, 2018

Like many other HPC professionals I’m following the hype cycle around machine learning/deep learning with interest. I subscribe to the view that we’re probably approaching the ‘peak of inflated expectation’ but not quite yet starting the descent into the ‘trough of disillusionment. This still raises the probability that... Read more…

By Dairsie Latimer

Xiaoxiang Zhu Receives the 2018 PRACE Ada Lovelace Award for HPC

June 13, 2018

Xiaoxiang Zhu, who works for the German Aerospace Center (DLR) and Technical University of Munich (TUM), was awarded the 2018 PRACE Ada Lovelace Award for HPC for her outstanding contributions in the field of high performance computing (HPC) in Europe. Read more…

By Elizabeth Leake

U.S Considering Launch of National Quantum Initiative

June 11, 2018

Sometime this month the U.S. House Science Committee will introduce legislation to launch a 10-year National Quantum Initiative, according to a recent report by Read more…

By John Russell

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

Exascale USA – Continuing to Move Forward

June 6, 2018

The end of May 2018, saw several important events that continue to advance the Department of Energy’s (DOE) Exascale Computing Initiative (ECI) for the United Read more…

By Alex R. Larzelere

Exascale for the Rest of Us: Exaflops Systems Capable for Industry

June 6, 2018

Enterprise advanced scale computing – or HPC in the enterprise – is an entity unto itself, situated between (and with characteristics of) conventional enter Read more…

By Doug Black

Fracas in Frankfurt: ISC18 Cluster Competition Teams Unveiled

June 6, 2018

The Student Cluster Competition season heats up with the seventh edition of the ISC Student Cluster Competition, slated to begin on June 25th in Frankfurt, Germ Read more…

By Dan Olds

MLPerf – Will New Machine Learning Benchmark Help Propel AI Forward?

May 2, 2018

Let the AI benchmarking wars begin. Today, a diverse group from academia and industry – Google, Baidu, Intel, AMD, Harvard, and Stanford among them – releas Read more…

By John Russell

How the Cloud Is Falling Short for HPC

March 15, 2018

The last couple of years have seen cloud computing gradually build some legitimacy within the HPC world, but still the HPC industry lies far behind enterprise I Read more…

By Chris Downing

US Plans $1.8 Billion Spend on DOE Exascale Supercomputing

April 11, 2018

On Monday, the United States Department of Energy announced its intention to procure up to three exascale supercomputers at a cost of up to $1.8 billion with th Read more…

By Tiffany Trader

Deep Learning at 15 PFlops Enables Training for Extreme Weather Identification at Scale

March 19, 2018

Petaflop per second deep learning training performance on the NERSC (National Energy Research Scientific Computing Center) Cori supercomputer has given climate Read more…

By Rob Farber

Lenovo Unveils Warm Water Cooled ThinkSystem SD650 in Rampup to LRZ Install

February 22, 2018

This week Lenovo took the wraps off the ThinkSystem SD650 high-density server with third-generation direct water cooling technology developed in tandem with par Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

ORNL Summit Supercomputer Is Officially Here

June 8, 2018

Oak Ridge National Laboratory (ORNL) together with IBM and Nvidia celebrated the official unveiling of the Department of Energy (DOE) Summit supercomputer toda Read more…

By Tiffany Trader

HPE Wins $57 Million DoD Supercomputing Contract

February 20, 2018

Hewlett Packard Enterprise (HPE) today revealed details of its massive $57 million HPC contract with the U.S. Department of Defense (DoD). The deal calls for HP Read more…

By Tiffany Trader

Leading Solution Providers

SC17 Booth Video Tours Playlist

Altair @ SC17

Altair

AMD @ SC17

AMD

ASRock Rack @ SC17

ASRock Rack

CEJN @ SC17

CEJN

DDN Storage @ SC17

DDN Storage

Huawei @ SC17

Huawei

IBM @ SC17

IBM

IBM Power Systems @ SC17

IBM Power Systems

Intel @ SC17

Intel

Lenovo @ SC17

Lenovo

Mellanox Technologies @ SC17

Mellanox Technologies

Microsoft @ SC17

Microsoft

Penguin Computing @ SC17

Penguin Computing

Pure Storage @ SC17

Pure Storage

Supericro @ SC17

Supericro

Tyan @ SC17

Tyan

Univa @ SC17

Univa

Hennessy & Patterson: A New Golden Age for Computer Architecture

April 17, 2018

On Monday June 4, 2018, 2017 A.M. Turing Award Winners John L. Hennessy and David A. Patterson will deliver the Turing Lecture at the 45th International Sympo Read more…

By Staff

Google Chases Quantum Supremacy with 72-Qubit Processor

March 7, 2018

Google pulled ahead of the pack this week in the race toward "quantum supremacy," with the introduction of a new 72-qubit quantum processor called Bristlecone. Read more…

By Tiffany Trader

Google I/O 2018: AI Everywhere; TPU 3.0 Delivers 100+ Petaflops but Requires Liquid Cooling

May 9, 2018

All things AI dominated discussion at yesterday’s opening of Google’s I/O 2018 developers meeting covering much of Google's near-term product roadmap. The e Read more…

By John Russell

Nvidia Ups Hardware Game with 16-GPU DGX-2 Server and 18-Port NVSwitch

March 27, 2018

Nvidia unveiled a raft of new products from its annual technology conference in San Jose today, and despite not offering up a new chip architecture, there were still a few surprises in store for HPC hardware aficionados. Read more…

By Tiffany Trader

Pattern Computer – Startup Claims Breakthrough in ‘Pattern Discovery’ Technology

May 23, 2018

If it weren’t for the heavy-hitter technology team behind start-up Pattern Computer, which emerged from stealth today in a live-streamed event from San Franci Read more…

By John Russell

Part One: Deep Dive into 2018 Trends in Life Sciences HPC

March 1, 2018

Life sciences is an interesting lens through which to see HPC. It is perhaps not an obvious choice, given life sciences’ relative newness as a heavy user of H Read more…

By John Russell

Intel Pledges First Commercial Nervana Product ‘Spring Crest’ in 2019

May 24, 2018

At its AI developer conference in San Francisco yesterday, Intel embraced a holistic approach to AI and showed off a broad AI portfolio that includes Xeon processors, Movidius technologies, FPGAs and Intel’s Nervana Neural Network Processors (NNPs), based on the technology it acquired in 2016. Read more…

By Tiffany Trader

Google Charts Two-Dimensional Quantum Course

April 26, 2018

Quantum error correction, essential for achieving universal fault-tolerant quantum computation, is one of the main challenges of the quantum computing field and it’s top of mind for Google’s John Martinis. At a presentation last week at the HPC User Forum in Tucson, Martinis, one of the world's foremost experts in quantum computing, emphasized... Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This