Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

By Gary Johnson

February 2, 2012

In the world of high performance computing, there are three distinct metrics in play: number crunching speed; data crunching speed; and energy efficiency. Can a computer excel at all three, or is our best recourse to try for something less than a hat trick?

An abundance of metrics

In the past, number crunching ruled HPC. The measure was LINPACK, the metric was FLOPS (floating point operations per second) and the list was the TOP500.  Currently, data crunching has soared in importance and visibility and is arguably on par with number crunching. The measure here is an evolving set of kernels from graph algorithms, the metric is TEPS (traversed edges per second) and the list is the Graph 500

Simultaneously, the previously unconstrained race to the top is being supplanted by a new form of competition – one constrained by electrical power. Hence the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. 

The explicit constraint, introduced as a design goal for an exaflop computer, is one exaflop/20 MW or 50 gigaflops per watt. The computer currently at the top of the Green500 list operates at slightly over two gigaflops per watt. So, the 20 MW design goal is quite ambitious. However, it has now brought energy efficiency to the forefront of HPC. It’s not just for tree huggers anymore.

Loneliness at the top

The top of each of these lists is a lonely place and an expensive one to inhabit. Most machines will never attain it, but this is the realm where a lot of innovation happens. If only a few machines can reach the summit, then one probably can’t afford to have them be highly effective on only a small set of applications.  The cost is simply too great. Other opportunities for research investments would probably outcompete a narrowly targeted machine.

So it seems that at the top end of HPC, we are now seeking energy efficient computers that perform well at both number and data crunching. Can we get all three? Let’s take a look at the current state of the art.

Graph-Top-Green 500 list comparisons

The current version of the TOP500 list cites energy efficiencies for a large number of its entries, while the Green500 list provides energy efficiencies for all of its entries. Meanwhile, the Graph 500 list is still very much a work in progress. The current version contains only 49 distinct computers and does not provide any mapping of these to either the TOP500 or the Green500 list. Nonetheless, it is possible to locate at least 19 Graph 500 computers on the other two lists. So we can make at least a partial comparison of these lists, the results of which are shown below.

The machine nicknames used are self-explanatory, except possibly for “NSQP2” which refers to the NNSA-Office of Science BlueGene/Q Prototype II. The machines are listed in the order of their average ranking across all three lists.

Some obvious conclusions may be drawn:

  • Tsubame is the clear overall winner.
  • A couple of machines show a reasonable balance over all three metrics – Tsubame and Gordon
  • If one picks Top & Green, Tsubame and Gordon are still the best.
  • For Graph & Green, NSQP2 wins, Tsubame is a close second, and Endeavor-W, Endeavor-S and Gordon look pretty good.
  • For the choice Graph & Top, there are surprisingly many good choices, including: Tsubame, Hopper, Intrepid, Jaguar, Jaguar PF, Kraken, Kraken-F, Lomonosov, Franklin, Lonestar and Red Sky.

The top five of the TOP500

Note that three of the top five TOP500 computers are missing from the comparison: K Computer (#1); Tianhe-1A (#2); and Nebulae (#4). This is because they’re not currently included in the Graph 500 list.  Jaguar (#3) and Tsubame (#5) are present. If the missing machines are added, the comparison looks like this:

The only comparison now possible is Top & Green.  As is shown above, Tsubame still wins. However the three new entries all score higher than Gordon.

Can one machine have it all?

Based on the limited sampling used here, it appears that the answer is yes. Tsubame is leading the way.  Kudos to Prof. Satoshi Matsuoka and his team at the Tokyo Institute of Technology’s Global Scientific Information and Computing Center (GSIC). It will be interesting to see if this conclusion remains true as we move along the path to exascale.

Secret sauce

Those curious about Tsubame’s secret sauce may consult the Tsubame2 System Architecture information on the GSIC website. Here’s a brief extract:

TSUBAME2 is a production supercomputer operated by Global Scientific Information and Computing Center (GSIC), Tokyo Institute of Technology in cooperation with our industrial partners, including NEC, HP, NVIDIA, Microsoft, Voltaire among others. Since Fall 2010, it has been one of the fastest and greenest supercomputers in the world, boasting 2.4 PFlops peak performance by aggressive GPU acceleration, which allows scientists to enjoy significantly faster, larger computing than ever. This is the second instantiation of our TSUBAME-series supercomputers with the first being, as you might guess, TSUBAME1. It also employed various cutting-edge HPC acceleration technologies, such as ClearSpeed and NVIDIA GPUs, where we had learned many important technical lessons that eventually played a crucial role in designing and constructing our latest supercomputer. Compared to its predecessor, TSUBAME2, while keeping its power consumption nearly the same as before, achieves 30x performance boost by inheriting and further enhancing the successful architectural designs.

Key architectural points cited are:

  • Extended usage of GPU accelerators
  • Much improved intra- and inter-node bandwidths
  • Petascale high-bandwidth shared storage
  • Ultra-fast local storage (SSD)

What about number Crunching versus data crunching?

Another noteworthy observation from the Graph & Top comparisons is that there are quite a few computers that seem reasonably well balanced for a mix of both number crunching and data crunching tasks. The conventional wisdom is that number crunching and data crunching take advantage of significantly different computer attributes and that a single computer architecture may not work well for both kinds of tasks.  The limited sampling used here appears to contradict that view.

Caveats

As previously mentioned, the Graph 500 list is a work in progress. As it matures and as the list expands to encompass more machines, the conclusions presented here could change.

In the comparisons made here, equal weight has been given to the importance of placement on each of the lists. If one assigns different weights, the conclusions may change. However, it appears that any “reasonable” set of weightings would yield substantially the same conclusions.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together about 30 participants from industry, government and academia t Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Researchers Scale COSMO Climate Code to 4888 GPUs on Piz Daint

October 17, 2017

Effective global climate simulation, sorely needed to anticipate and cope with global warming, has long been computationally challenging. Two of the major obstacles are the needed resolution and prolonged time to compute Read more…

By John Russell

HPE Extreme Performance Solutions

Transforming Genomic Analytics with HPC-Accelerated Insights

Advancements in the field of genomics are revolutionizing our understanding of human biology, rapidly accelerating the discovery and treatment of genetic diseases, and dramatically improving human health. Read more…

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Cluster Competition coverage has come to its natural home: H Read more…

By Dan Olds

Data Vortex Users Contemplate the Future of Supercomputing

October 19, 2017

Last month (Sept. 11-12), HPC networking company Data Vortex held its inaugural users group at Pacific Northwest National Laboratory (PNNL) bringing together ab Read more…

By Tiffany Trader

AI Self-Training Goes Forward at Google DeepMind

October 19, 2017

DeepMind, Google’s AI research organization, announced today in a blog that AlphaGo Zero, the latest evolution of AlphaGo (the first computer program to defeat a Go world champion) trained itself within three days to play Go at a superhuman level (i.e., better than any human) – and to beat the old version of AlphaGo – without leveraging human expertise, data or training. Read more…

By Doug Black

Student Cluster Competition Coverage New Home

October 16, 2017

Hello computer sports fans! This is the first of many (many!) articles covering the world-wide phenomenon of Student Cluster Competitions. Finally, the Student Read more…

By Dan Olds

Intel Delivers 17-Qubit Quantum Chip to European Research Partner

October 10, 2017

On Tuesday, Intel delivered a 17-qubit superconducting test chip to research partner QuTech, the quantum research institute of Delft University of Technology (TU Delft) in the Netherlands. The announcement marks a major milestone in the 10-year, $50-million collaborative relationship with TU Delft and TNO, the Dutch Organization for Applied Research, to accelerate advancements in quantum computing. Read more…

By Tiffany Trader

Fujitsu Tapped to Build 37-Petaflops ABCI System for AIST

October 10, 2017

Fujitsu announced today it will build the long-planned AI Bridging Cloud Infrastructure (ABCI) which is set to become the fastest supercomputer system in Japan Read more…

By John Russell

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Intel Debuts Programmable Acceleration Card

October 5, 2017

With a view toward supporting complex, data-intensive applications, such as AI inference, video streaming analytics, database acceleration and genomics, Intel i Read more…

By Doug Black

Reinders: “AVX-512 May Be a Hidden Gem” in Intel Xeon Scalable Processors

June 29, 2017

Imagine if we could use vector processing on something other than just floating point problems.  Today, GPUs and CPUs work tirelessly to accelerate algorithms Read more…

By James Reinders

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Leading Solution Providers

Graphcore Readies Launch of 16nm Colossus-IPU Chip

July 20, 2017

A second $30 million funding round for U.K. AI chip developer Graphcore sets up the company to go to market with its “intelligent processing unit” (IPU) in Read more…

By Tiffany Trader

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Cray Moves to Acquire the Seagate ClusterStor Line

July 28, 2017

This week Cray announced that it is picking up Seagate's ClusterStor HPC storage array business for an undisclosed sum. "In short we're effectively transitioning the bulk of the ClusterStor product line to Cray," said CEO Peter Ungaro. Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

IBM Advances Web-based Quantum Programming

September 5, 2017

IBM Research is pairing its Jupyter-based Data Science Experience notebook environment with its cloud-based quantum computer, IBM Q, in hopes of encouraging a new class of entrepreneurial user to solve intractable problems that even exceed the capabilities of the best AI systems. Read more…

By Alex Woodie

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This