Number Crunching, Data Crunching and Energy Efficiency: the HPC Hat Trick

By Gary Johnson

February 2, 2012

In the world of high performance computing, there are three distinct metrics in play: number crunching speed; data crunching speed; and energy efficiency. Can a computer excel at all three, or is our best recourse to try for something less than a hat trick?

An abundance of metrics

In the past, number crunching ruled HPC. The measure was LINPACK, the metric was FLOPS (floating point operations per second) and the list was the TOP500.  Currently, data crunching has soared in importance and visibility and is arguably on par with number crunching. The measure here is an evolving set of kernels from graph algorithms, the metric is TEPS (traversed edges per second) and the list is the Graph 500

Simultaneously, the previously unconstrained race to the top is being supplanted by a new form of competition – one constrained by electrical power. Hence the Green500 list. Here, the measure is energy efficiency and the metric is MFLOPS/watt. 

The explicit constraint, introduced as a design goal for an exaflop computer, is one exaflop/20 MW or 50 gigaflops per watt. The computer currently at the top of the Green500 list operates at slightly over two gigaflops per watt. So, the 20 MW design goal is quite ambitious. However, it has now brought energy efficiency to the forefront of HPC. It’s not just for tree huggers anymore.

Loneliness at the top

The top of each of these lists is a lonely place and an expensive one to inhabit. Most machines will never attain it, but this is the realm where a lot of innovation happens. If only a few machines can reach the summit, then one probably can’t afford to have them be highly effective on only a small set of applications.  The cost is simply too great. Other opportunities for research investments would probably outcompete a narrowly targeted machine.

So it seems that at the top end of HPC, we are now seeking energy efficient computers that perform well at both number and data crunching. Can we get all three? Let’s take a look at the current state of the art.

Graph-Top-Green 500 list comparisons

The current version of the TOP500 list cites energy efficiencies for a large number of its entries, while the Green500 list provides energy efficiencies for all of its entries. Meanwhile, the Graph 500 list is still very much a work in progress. The current version contains only 49 distinct computers and does not provide any mapping of these to either the TOP500 or the Green500 list. Nonetheless, it is possible to locate at least 19 Graph 500 computers on the other two lists. So we can make at least a partial comparison of these lists, the results of which are shown below.

The machine nicknames used are self-explanatory, except possibly for “NSQP2” which refers to the NNSA-Office of Science BlueGene/Q Prototype II. The machines are listed in the order of their average ranking across all three lists.

Some obvious conclusions may be drawn:

  • Tsubame is the clear overall winner.
  • A couple of machines show a reasonable balance over all three metrics – Tsubame and Gordon
  • If one picks Top & Green, Tsubame and Gordon are still the best.
  • For Graph & Green, NSQP2 wins, Tsubame is a close second, and Endeavor-W, Endeavor-S and Gordon look pretty good.
  • For the choice Graph & Top, there are surprisingly many good choices, including: Tsubame, Hopper, Intrepid, Jaguar, Jaguar PF, Kraken, Kraken-F, Lomonosov, Franklin, Lonestar and Red Sky.

The top five of the TOP500

Note that three of the top five TOP500 computers are missing from the comparison: K Computer (#1); Tianhe-1A (#2); and Nebulae (#4). This is because they’re not currently included in the Graph 500 list.  Jaguar (#3) and Tsubame (#5) are present. If the missing machines are added, the comparison looks like this:

The only comparison now possible is Top & Green.  As is shown above, Tsubame still wins. However the three new entries all score higher than Gordon.

Can one machine have it all?

Based on the limited sampling used here, it appears that the answer is yes. Tsubame is leading the way.  Kudos to Prof. Satoshi Matsuoka and his team at the Tokyo Institute of Technology’s Global Scientific Information and Computing Center (GSIC). It will be interesting to see if this conclusion remains true as we move along the path to exascale.

Secret sauce

Those curious about Tsubame’s secret sauce may consult the Tsubame2 System Architecture information on the GSIC website. Here’s a brief extract:

TSUBAME2 is a production supercomputer operated by Global Scientific Information and Computing Center (GSIC), Tokyo Institute of Technology in cooperation with our industrial partners, including NEC, HP, NVIDIA, Microsoft, Voltaire among others. Since Fall 2010, it has been one of the fastest and greenest supercomputers in the world, boasting 2.4 PFlops peak performance by aggressive GPU acceleration, which allows scientists to enjoy significantly faster, larger computing than ever. This is the second instantiation of our TSUBAME-series supercomputers with the first being, as you might guess, TSUBAME1. It also employed various cutting-edge HPC acceleration technologies, such as ClearSpeed and NVIDIA GPUs, where we had learned many important technical lessons that eventually played a crucial role in designing and constructing our latest supercomputer. Compared to its predecessor, TSUBAME2, while keeping its power consumption nearly the same as before, achieves 30x performance boost by inheriting and further enhancing the successful architectural designs.

Key architectural points cited are:

  • Extended usage of GPU accelerators
  • Much improved intra- and inter-node bandwidths
  • Petascale high-bandwidth shared storage
  • Ultra-fast local storage (SSD)

What about number Crunching versus data crunching?

Another noteworthy observation from the Graph & Top comparisons is that there are quite a few computers that seem reasonably well balanced for a mix of both number crunching and data crunching tasks. The conventional wisdom is that number crunching and data crunching take advantage of significantly different computer attributes and that a single computer architecture may not work well for both kinds of tasks.  The limited sampling used here appears to contradict that view.

Caveats

As previously mentioned, the Graph 500 list is a work in progress. As it matures and as the list expands to encompass more machines, the conclusions presented here could change.

In the comparisons made here, equal weight has been given to the importance of placement on each of the lists. If one assigns different weights, the conclusions may change. However, it appears that any “reasonable” set of weightings would yield substantially the same conclusions.

—–

About the author

Gary M. Johnson is the founder of Computational Science Solutions, LLC, whose mission is to develop, advocate, and implement solutions for the global computational science and engineering community.

Dr. Johnson specializes in management of high performance computing, applied mathematics, and computational science research activities; advocacy, development, and management of high performance computing centers; development of national science and technology policy; and creation of education and research programs in computational engineering and science.

He has worked in Academia, Industry and Government. He has held full professorships at Colorado State University and George Mason University, been a researcher at United Technologies Research Center, and worked for the Department of Defense, NASA, and the Department of Energy.

He is a graduate of the U.S. Air Force Academy; holds advanced degrees from Caltech and the von Karman Institute; and has a Ph.D. in applied sciences from the University of Brussels.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of quantum. This week, Microsoft took the next step in advanci Read more…

By Tiffany Trader

ESnet Now Moving More Than 1 Petabyte/wk

December 12, 2017

Optimizing ESnet (Energy Sciences Network), the world's fastest network for science, is an ongoing process. Recently a two-year collaboration by ESnet users – the Petascale DTN Project – achieved its ambitious goal t Read more…

HPC-as-a-Service Finds Toehold in Iceland

December 11, 2017

While high-demand workloads (e.g., bitcoin mining) can overheat data center cooling capabilities, at least one data center infrastructure provider has announced an HPC-as-a-service offering that features 100 percent fre Read more…

By Doug Black

HPE Extreme Performance Solutions

Explore the Origins of Space with COSMOS and Memory-Driven Computing

From the formation of black holes to the origins of space, data is the key to unlocking the secrets of the early universe. Read more…

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be carefully woven together by people to create the computational c Read more…

By Alex R. Larzelere

Microsoft Wants to Speed Quantum Development

December 12, 2017

Quantum computing continues to make headlines in what remains of 2017 as tech giants jockey to establish a pole position in the race toward commercialization of Read more…

By Tiffany Trader

HPC Iron, Soft, Data, People – It Takes an Ecosystem!

December 11, 2017

Cutting edge advanced computing hardware (aka big iron) does not stand by itself. These computers are the pinnacle of a myriad of technologies that must be care Read more…

By Alex R. Larzelere

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Microsoft Spins Cycle Computing into Core Azure Product

December 5, 2017

Last August, cloud giant Microsoft acquired HPC cloud orchestration pioneer Cycle Computing. Since then the focus has been on integrating Cycle’s organization Read more…

By John Russell

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPE In-Memory Platform Comes to COSMOS

November 30, 2017

Hewlett Packard Enterprise is on a mission to accelerate space research. In August, it sent the first commercial-off-the-shelf HPC system into space for testing Read more…

By Tiffany Trader

SC17 Cluster Competition: Who Won and Why? Results Analyzed and Over-Analyzed

November 28, 2017

Everyone by now knows that Nanyang Technological University of Singapore (NTU) took home the highest LINPACK Award and the Overall Championship from the recently concluded SC17 Student Cluster Competition. We also already know how the teams did in the Highest LINPACK and Highest HPCG competitions, with Nanyang grabbing bragging rights for both benchmarks. Read more…

By Dan Olds

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

NERSC Scales Scientific Deep Learning to 15 Petaflops

August 28, 2017

A collaborative effort between Intel, NERSC and Stanford has delivered the first 15-petaflops deep learning software running on HPC platforms and is, according Read more…

By Rob Farber

Oracle Layoffs Reportedly Hit SPARC and Solaris Hard

September 7, 2017

Oracle’s latest layoffs have many wondering if this is the end of the line for the SPARC processor and Solaris OS development. As reported by multiple sources Read more…

By John Russell

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Google Releases Deeplearn.js to Further Democratize Machine Learning

August 17, 2017

Spreading the use of machine learning tools is one of the goals of Google’s PAIR (People + AI Research) initiative, which was introduced in early July. Last w Read more…

By John Russell

Leading Solution Providers

Amazon Debuts New AMD-based GPU Instances for Graphics Acceleration

September 12, 2017

Last week Amazon Web Services (AWS) streaming service, AppStream 2.0, introduced a new GPU instance called Graphics Design intended to accelerate graphics. The Read more…

By John Russell

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

EU Funds 20 Million Euro ARM+FPGA Exascale Project

September 7, 2017

At the Barcelona Supercomputer Centre on Wednesday (Sept. 6), 16 partners gathered to launch the EuroEXA project, which invests €20 million over three-and-a-half years into exascale-focused research and development. Led by the Horizon 2020 program, EuroEXA picks up the banner of a triad of partner projects — ExaNeSt, EcoScale and ExaNoDe — building on their work... Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Intel Launches Software Tools to Ease FPGA Programming

September 5, 2017

Field Programmable Gate Arrays (FPGAs) have a reputation for being difficult to program, requiring expertise in specialty languages, like Verilog or VHDL. Easin Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This