AMD Unveils New Strategy for Server Silicon

By Michael Feldman

February 7, 2012

AMD is plotting a relatively conservative roadmap for its Opteron CPUs over the next year or two, even as it preps its heterogenous computing technology for the big leap into the server arena. At the company’s 2012 Financial Analyst Day last week, AMD execs re-pledged their commitment to the server market and outlined a strategy that puts less emphasis on high performance cores and design complexity and more on power efficiency and building SoC products tailored to specific datacenter workloads.

In the near term though, it will be very much business as usual for the Opteron line. The big news (or non-news) is that AMD will not follow the top-of-the-line 16-core Interlagos chip with a 20-core successor — the so-called “Terramar” CPU. Instead, the company will offer “Abu Dhabi,” which, like its predecessor, tops out at 16 cores. It also uses the same processor technology (32nm) and offers the same memory support (quad-channel DDR3) There is no support for PCIe Gen 3, which was skipped for this go-around with the rationale that the newer, faster bus interface won’t be needed “until the market is better positioned for wide adoption of that very high-end technology.”

Abu Dhabi and the other next-generation Opterons (“Seoul” and “Delhi”) will be based on a new core architecture, known as “Piledriver,” and are scheduled to be launched in the second half of 2012. Rather than a complete redesign, Piledriver appears to be a tweak of the modular CPU design AMD pioneered with Bulldozer last year. The architectural enhancements include new ISA extensions and improved IPC. Essentially AMD is doing two tocks (microarchitecture redesign) in a row, with no intervening tick (process technology shrink).

The chipmaker’s conservative Opteron strategy may reflect some new thinking there. According to AMD’s new CTO, Mark Papermaster, in the past the company has put too much effort squeezing the last ounce of performance out of the cores, using extra design complexity to compensate for second place in semiconductor manufacturing. “We’ve gone after that last two to three percent performance, and historically it’s led to a longer development cycle,” said Papermaster. According to him, the new focus is on time-to-market and using hardware-software codesign to deliver application platforms, rather than just silicon.

Lisa Su, Senior Vice President and General Manager or AMD’s Global Business Units, said the decision not to scale up the core count on the next-generation Opterons was the result of customer feedback. According to her, rather than wanting more cores, their server clients were just interested upgraded Opteron parts that could be plugged into the existing G34 and C32 sockets. In any case, since AMD has no fab partner that is ready to move to a sub-32nm process, there really wouldn’t be additional die space available for more cores, caches, and bigger memory controllers without a much more drastic microarchitecture design.

According to Su, the new Piledriver cores will deliver more performance at the same TDP, although, at this stage, AMD is not offering any numbers that would shed light on those improvements. If the company can eke out some additional FLOPS from the Piledriver cores, along with some interesting ISA extensions, that’s probably their best shot at competing against Intel’s Sandy Bridge Xeon CPUs (E5 series), which are built on 22nm technology. The Xeon E5 CPUs are already installed in a number of top supercomputers, although the chips are not officially launched yet.
 
Delphi, in case you were wondering, is the successor to the not-yet-released Zurich CPU, which is based on the current generation Bulldozer core. Zurich is slated for release in the first half of 2012. These 1P processors will inhabit a new socket known as AM3+, code-named “Jakarta.” They are being targeted to light-weight web serving and related microserver space, which Intel has recently made a play for with its low-power Xeons and higher-end Atom chips.

Beyond Piledriver, is the Steamroller architecture, another modular CPU design that promises greater parallelism, which could mean either more cores or simultaneous multi-threading or both. After Steamroller come “Excavator,” a microarchitecture that focuses on greater performance. No dates were attached to either of these designs but 2013 and 2014, respectively, would be likely timeframes.

Of course, the other side of AMD is their GPU portfolio. But it’s notable that none of the product talk during the Financial Analyst Day mentioned the company’s FireStream offerings, the company’s discrete GPU accelerators aimed at high performance computing. In the face of nearly complete dominance of NVIDIA’s Tesla products for this space, it’s likely that AMD has ceded this market to its rival, at least for the time being.

Where AMD has a clear advantage is its ability to marry its CPU and GPU logic onto integrated heterogeneous chips, which they call APUs (accelerated processing units). All the APUs the company has developed to date have been targeted to client devices — desktops, notebooks and soon tablets. Not surprisingly, company execs devoted much attention to the APU client roadmap during the Analyst Day. But there was also a fair amount of discussion about migrating APU designs into the server space.

In particular, AMD sees custom datacenter workloads in areas like multimedia web serving, search engine processing, visual rendering, high performance computing as an opportunity for GPU acceleration in their heterogeneous computing platforms. One aspect to this is that they intend to be able to build SoC products in a modular way that combines x86 cores with their GPU designs, and do it in such a way as to tailor different chip designs to different workloads. AMD is even willing to incorporate third-party IP blocks into these SoCs, for example, fixed-function cores aimed at very specific types of processing like codec encoding/decoding.

The logic behind this strategy is that because many of these workloads are feeding the boom in web-connected mobile devices, there is a huge and rapidly growing market for such server infrastructure. “You’re not just talking about racks and racks of servers that just care about power and performance,” said Su, “you’re talking about specialty workloads, and it actually will fragment the server market a bit.”

Citing IDC numbers, AMD points to projected compounded annual growth rates of 15 percent, for cloud-based web applications; 13 percent, for virtualized workloads; and 7.3 percent, for high performance computing, over the next three years. Whether those numbers pan out as forecast and are enough to support volume production of specialized SoCs remains to be seen, but AMD doesn’t want to left with its one-trick Opteron pony if the server market starts to fragment.

Executing on that strategy is going to be the principle challenge for AMD. In the short-term, it has to find a way to get its server market share above the single-digit level — 5 to 7 percent in 2011, by most estimates — on the merits of its Opteron line. But the more difficult task ahead will be moving its heterogeneous technology into the datacenter. Although AMD has more of the pieces in place than its competitors, the heterogeneous waters here are uncharted. Nimbleness will be well-rewarded.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Portugal Launches Its First Supercomputer

July 12, 2019

Portugal has officially inaugurated its first-ever supercomputer. The unassumingly named “Bob” supercomputer is housed in the Minho Advanced Computer Center (MACC) at the University of Minho.  Bob was announced i Read more…

By Oliver Peckham

What’s New in HPC Research: Traffic Simulation, Performance Variations, Scheduling & More

July 11, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered servers for AI workloads, has expanded the program beyond th Read more…

By Doug Black

HPE Extreme Performance Solutions

HPE and Intel® Omni-Path Architecture: How to Power a Cloud

Learn how HPE and Intel® Omni-Path Architecture provide critical infrastructure for leading Nordic HPC provider’s HPCFLOW cloud service.

For decades, HPE has been at the forefront of high-performance computing, and we’ve powered some of the fastest and most robust supercomputers in the world. Read more…

IBM Accelerated Insights

How AI Powers Up Data Management and Analytics

Companies are making more decisions based on data. However, the ability to intelligently process the growing volume of data is a bottleneck to extracting actionable insights. Read more…

Quantum Start-up Rigetti Acquires QxBranch; Bolsters App Dev Capability

July 11, 2019

Quantum startup Rigetti Computing announced today it acquired QxBranch, a quantum computing and data analytics software startup. The latest move marks what has been a busy year for Rigetti. Roughly one year ago, it annou Read more…

By John Russell

Nvidia Expands DGX-Ready AI Program to 19 Countries

July 11, 2019

Nvidia’s DGX-Ready Data Center Program, announced in January and designed to provide colo and public cloud-like options to access the company’s GPU-powered Read more…

By Doug Black

Argonne Team Makes Record Globus File Transfer

July 10, 2019

A team of scientists at Argonne National Laboratory has broken a data transfer record by moving a staggering 2.9 petabytes of data for a research project.  The data – from three large cosmological simulations – was generated and stored on the Summit supercomputer at the Oak Ridge Leadership Computing Facility (OLCF)... Read more…

By Oliver Peckham

Nvidia, Google Tie in Second MLPerf Training ‘At-Scale’ Round

July 10, 2019

Results for the second round of the AI benchmarking suite known as MLPerf were published today with Google Cloud and Nvidia each picking up three wins in the at Read more…

By Tiffany Trader

Applied Materials Embedding New Memory Technologies in Chips

July 9, 2019

Applied Materials, the $17 billion Santa Clara-based materials engineering company for the semiconductor industry, today announced manufacturing systems enablin Read more…

By Doug Black

ISC19 Cluster Competition: HPCC Deep Dive

July 7, 2019

The biggest benchmark the student warriors tackled during the ISC19 Student Cluster Competition was the colossal HPC Challenge. This is a collection of benchmar Read more…

By Dan Olds

OLCF Bids Farewell to Its Titan Supercomputer

July 4, 2019

After seven years of faithful service, and a long reign as the United States' fastest supercomputer, the Cray XK7-based Titan supercomputer at the Oak Ridge Lea Read more…

By Staff report

Quantum Bits: Neven’s Law (Who Asked for That), D-Wave’s Steady Push, IBM’s Li-O2- Simulation

July 3, 2019

Quantum computing’s (QC) many-faceted R&D train keeps slogging ahead and recently Japan is taking a leading role. Yesterday D-Wave Systems announced it ha Read more…

By John Russell

Intel Partners with Baidu on Neural Network Training Chip

July 2, 2019

A pillar of Intel’s emerging AI product portfolio, its upcoming Nervana Neural Network Processor for training (NNP-T), will be a collaborative development eff Read more…

By Doug Black

High Performance (Potato) Chips

May 5, 2006

In this article, we focus on how Procter & Gamble is using high performance computing to create some common, everyday supermarket products. Tom Lange, a 27-year veteran of the company, tells us how P&G models products, processes and production systems for the betterment of consumer package goods. Read more…

By Michael Feldman

Cray, AMD to Extend DOE’s Exascale Frontier

May 7, 2019

Cray and AMD are coming back to Oak Ridge National Laboratory to partner on the world’s largest and most expensive supercomputer. The Department of Energy’s Read more…

By Tiffany Trader

Graphene Surprises Again, This Time for Quantum Computing

May 8, 2019

Graphene is fascinating stuff with promise for use in a seeming endless number of applications. This month researchers from the University of Vienna and Institu Read more…

By John Russell

AMD Verifies Its Largest 7nm Chip Design in Ten Hours

June 5, 2019

AMD announced last week that its engineers had successfully executed the first physical verification of its largest 7nm chip design – in just ten hours. The AMD Radeon Instinct Vega20 – which boasts 13.2 billion transistors – was tested using a TSMC-certified Calibre nmDRC software platform from Mentor. Read more…

By Oliver Peckham

It’s Official: Aurora on Track to Be First US Exascale Computer in 2021

March 18, 2019

The U.S. Department of Energy along with Intel and Cray confirmed today that an Intel/Cray supercomputer, "Aurora," capable of sustained performance of one exaf Read more…

By Tiffany Trader

TSMC and Samsung Moving to 5nm; Whither Moore’s Law?

June 12, 2019

With reports that Taiwan Semiconductor Manufacturing Co. (TMSC) and Samsung are moving quickly to 5nm manufacturing, it’s a good time to again ponder whither goes the venerable Moore’s law. Shrinking feature size has of course been the primary hallmark of achieving Moore’s law... Read more…

By John Russell

Deep Learning Competitors Stalk Nvidia

May 14, 2019

There is no shortage of processing architectures emerging to accelerate deep learning workloads, with two more options emerging this week to challenge GPU leader Nvidia. First, Intel researchers claimed a new deep learning record for image classification on the ResNet-50 convolutional neural network. Separately, Israeli AI chip startup Hailo.ai... Read more…

By George Leopold

Nvidia Embraces Arm, Declares Intent to Accelerate All CPU Architectures

June 17, 2019

As the Top500 list was being announced at ISC in Frankfurt today with an upgraded petascale Arm supercomputer in the top third of the list, Nvidia announced its Read more…

By Tiffany Trader

Leading Solution Providers

ISC 2019 Virtual Booth Video Tour

CRAY
CRAY
DDN
DDN
DELL EMC
DELL EMC
GOOGLE
GOOGLE
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
VERNE GLOBAL
VERNE GLOBAL

Why Nvidia Bought Mellanox: ‘Future Datacenters Will Be…Like High Performance Computers’

March 14, 2019

“Future datacenters of all kinds will be built like high performance computers,” said Nvidia CEO Jensen Huang during a phone briefing on Monday after Nvidia revealed scooping up the high performance networking company Mellanox for $6.9 billion. Read more…

By Tiffany Trader

Top500 Purely Petaflops; US Maintains Performance Lead

June 17, 2019

With the kick-off of the International Supercomputing Conference (ISC) in Frankfurt this morning, the 53rd Top500 list made its debut, and this one's for petafl Read more…

By Tiffany Trader

Intel Launches Cascade Lake Xeons with Up to 56 Cores

April 2, 2019

At Intel's Data-Centric Innovation Day in San Francisco (April 2), the company unveiled its second-generation Xeon Scalable (Cascade Lake) family and debuted it Read more…

By Tiffany Trader

Cray – and the Cray Brand – to Be Positioned at Tip of HPE’s HPC Spear

May 22, 2019

More so than with most acquisitions of this kind, HPE’s purchase of Cray for $1.3 billion, announced last week, seems to have elements of that overused, often Read more…

By Doug Black and Tiffany Trader

A Behind-the-Scenes Look at the Hardware That Powered the Black Hole Image

June 24, 2019

Two months ago, the first-ever image of a black hole took the internet by storm. A team of scientists took years to produce and verify the striking image – an Read more…

By Oliver Peckham

Announcing four new HPC capabilities in Google Cloud Platform

April 15, 2019

When you’re running compute-bound or memory-bound applications for high performance computing or large, data-dependent machine learning training workloads on Read more…

By Wyatt Gorman, HPC Specialist, Google Cloud; Brad Calder, VP of Engineering, Google Cloud; Bart Sano, VP of Platforms, Google Cloud

Chinese Company Sugon Placed on US ‘Entity List’ After Strong Showing at International Supercomputing Conference

June 26, 2019

After more than a decade of advancing its supercomputing prowess, operating the world’s most powerful supercomputer from June 2013 to June 2018, China is keep Read more…

By Tiffany Trader

In Wake of Nvidia-Mellanox: Xilinx to Acquire Solarflare

April 25, 2019

With echoes of Nvidia’s recent acquisition of Mellanox, FPGA maker Xilinx has announced a definitive agreement to acquire Solarflare Communications, provider Read more…

By Doug Black

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This