AMD Opens Up Heterogeneous Computing

By Michael Feldman

February 9, 2012

Last week, AMD used its Financial Analyst Day to talk up heterogeneous computing, the technology that the company is betting on to be the next “big thing” in the microprocessor business. To that end, company execs explained how their newly hatched Heterogeneous System Architecture (HSA) will evolve over the next three years to drive their product roadmap forward.

HSA, which until recently was know as the Fusion architecture, is AMD’s platform design for integrating CPU and GPU cores onto the same chip. But HSA is more than AMD’s attempt to define an architecture for internal use, as was the case for Fusion. Rather HSA is an open specification that AMD wants the industry to adopt as the de facto platform for heterogenous computing.

As we reported earlier this week, AMD’s heterogeneous computing aspirations in the short-term will focus expanding its APU (Accelerated Processing Unit) wins in client computing devices, like notebooks and tablets. But the chipmaker has its sites set on eventually moving these chips into the server market, where application workloads like HPC and multimedia web serving can take advantage of the on-silicon CPU-GPU integration.

It’s worth noting that over the next three years, AMD intends to evolve the HSA feature set toward greater integration and more advanced capabilities — features that would dovetail nicely with server work. For example, by 2013, the chipmaker intends to support fully coherent memory and a unified address space for the CPU and GPU, and by 2014, HSA will enable capabilities like GPU context switching and QoS support. NVIDIA is likely to have a similar roadmap as it rolls out its upcoming “Project Denver” (ARM-GPU) offerings, but only AMD has offered up a public roadmap with this much detail.

This all assumes the industry is ready and willing to adopt heterogenous computing as the game-changer technology that AMD believes it to be. While system heterogeneity is already pretty well-accepted in the HPC community, the larger IT community, and especially the mobile computing space, is just beginning to realize the benefits. So part of the AMD’s efforts last week focused on making that case.

In a breakout session at the Financial Analyst Day, AMD Corporate Fellow Phil Rogers reminded the audience that Moore’s Law, which drove the single-core and multicore eras of computing, is now being constrained by power. The solution is to use the available transistor budget more intelligently, that is, design the chips to be much more efficient at running parallel workloads.

“Today far too much parallel processing gets executed on processors that were not specifically designed for that process,” said Rogers. “What that means is a waste of power, and wasting power today is unforgivable.”

That message, which is essentially what NVIDIA has been preaching for years, implies that CPUs, as good as they are for serial processing, have failed to deliver the goods on parallel processing, especially data parallel workloads. GPUs, on the other hand can offer parallelism by the boatload, and in a power-efficient package.

Integrating the two architectures together, where the GPU is an on-chip coprocessor, is the optimal solution, says Rogers. By doing so, the two processors are brought into the same memory subsystem, which not only makes data communication between the disparate cores more efficient, it also greatly simplifies the programming model for GPU computing by bringing it into the realm of Symmetric Multi-Processing (SMP).

At least that’s the idea behind HSA. The spec is currently making the rounds with both AMD partners and competitors, in an attempt to get feedback from interested parties, but just as importantly, to get vendor buy-in. The goal is to build an ecosystem big and broad enough to support AMD’s APU offerings.

Specifically, the idea is to entice developers and ISVs to write applications to the spec, with the promise that the software would automagically work on anyone’s hardware. To make that a reality, AMD had to devise an architectural specification that was generic enough to be applicable to different microprocessors: CPUs, GPUs, or mixtures of the two. For example, the specification includes a so-called “virtual ISA” that is intended to make the architecture instruction-set agnostic.

Of course, platform neutrality was also the driving force behind OpenCL, an open programming standard for parallel programming introduced in 2008 and has attracted a wide set of adherents. HSA and OpenCL are compatible, inasmuch as HSA is being cast as a “optimized platform architecture for OpenCL.” That means initially, at least, some HSA features will have to be implemented as OpenCL extensions. According to Rogers, some of these features, such as eliminating data copies and low-latency dispatching, will make OpenCL codes more efficient.

The larger issue is that OpenCL is a low-level language that mainstream programmers are generally loathe to use. The high-level feature set of HSA is more in line with Microsoft’s new C++ AMP (Accelerated Massive Parallelism), a C++ extension geared for parallel programming on GPUs. Rogers believes the extension provides a natural programming platform for HSA and a way to leverage the vast C++ code repository. Given the Microsoft intends to fold C++ AMP into Visual Studio and Windows 8 Metro, AMD will potentially have a way to connect HSA with the enormous contingent of Windows developers and users.

The question remains whether Intel, NVIDIA and at least some of the ARM vendors will buy into AMD’s version of heterogeneous computing. Although Rogers said they have passed the HSA spec along to some of its competitors and received some feedback, AMD is not ready to name names. In general, Intel and NVIDIA are willing to embrace any open standard that their customer base is willing to adopt, but each also has in-house parallel frameworks to tout — CUDA for NVIDIA, and Threading Building Blocks and Cilk Plus for Intel — all of which are potentially hardware-agnostic. With AMD throwing HSA on the table, the competition for parallel computing mindshare just gets a little more interesting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Leading Solution Providers

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This