AMD Opens Up Heterogeneous Computing

By Michael Feldman

February 9, 2012

Last week, AMD used its Financial Analyst Day to talk up heterogeneous computing, the technology that the company is betting on to be the next “big thing” in the microprocessor business. To that end, company execs explained how their newly hatched Heterogeneous System Architecture (HSA) will evolve over the next three years to drive their product roadmap forward.

HSA, which until recently was know as the Fusion architecture, is AMD’s platform design for integrating CPU and GPU cores onto the same chip. But HSA is more than AMD’s attempt to define an architecture for internal use, as was the case for Fusion. Rather HSA is an open specification that AMD wants the industry to adopt as the de facto platform for heterogenous computing.

As we reported earlier this week, AMD’s heterogeneous computing aspirations in the short-term will focus expanding its APU (Accelerated Processing Unit) wins in client computing devices, like notebooks and tablets. But the chipmaker has its sites set on eventually moving these chips into the server market, where application workloads like HPC and multimedia web serving can take advantage of the on-silicon CPU-GPU integration.

It’s worth noting that over the next three years, AMD intends to evolve the HSA feature set toward greater integration and more advanced capabilities — features that would dovetail nicely with server work. For example, by 2013, the chipmaker intends to support fully coherent memory and a unified address space for the CPU and GPU, and by 2014, HSA will enable capabilities like GPU context switching and QoS support. NVIDIA is likely to have a similar roadmap as it rolls out its upcoming “Project Denver” (ARM-GPU) offerings, but only AMD has offered up a public roadmap with this much detail.

This all assumes the industry is ready and willing to adopt heterogenous computing as the game-changer technology that AMD believes it to be. While system heterogeneity is already pretty well-accepted in the HPC community, the larger IT community, and especially the mobile computing space, is just beginning to realize the benefits. So part of the AMD’s efforts last week focused on making that case.

In a breakout session at the Financial Analyst Day, AMD Corporate Fellow Phil Rogers reminded the audience that Moore’s Law, which drove the single-core and multicore eras of computing, is now being constrained by power. The solution is to use the available transistor budget more intelligently, that is, design the chips to be much more efficient at running parallel workloads.

“Today far too much parallel processing gets executed on processors that were not specifically designed for that process,” said Rogers. “What that means is a waste of power, and wasting power today is unforgivable.”

That message, which is essentially what NVIDIA has been preaching for years, implies that CPUs, as good as they are for serial processing, have failed to deliver the goods on parallel processing, especially data parallel workloads. GPUs, on the other hand can offer parallelism by the boatload, and in a power-efficient package.

Integrating the two architectures together, where the GPU is an on-chip coprocessor, is the optimal solution, says Rogers. By doing so, the two processors are brought into the same memory subsystem, which not only makes data communication between the disparate cores more efficient, it also greatly simplifies the programming model for GPU computing by bringing it into the realm of Symmetric Multi-Processing (SMP).

At least that’s the idea behind HSA. The spec is currently making the rounds with both AMD partners and competitors, in an attempt to get feedback from interested parties, but just as importantly, to get vendor buy-in. The goal is to build an ecosystem big and broad enough to support AMD’s APU offerings.

Specifically, the idea is to entice developers and ISVs to write applications to the spec, with the promise that the software would automagically work on anyone’s hardware. To make that a reality, AMD had to devise an architectural specification that was generic enough to be applicable to different microprocessors: CPUs, GPUs, or mixtures of the two. For example, the specification includes a so-called “virtual ISA” that is intended to make the architecture instruction-set agnostic.

Of course, platform neutrality was also the driving force behind OpenCL, an open programming standard for parallel programming introduced in 2008 and has attracted a wide set of adherents. HSA and OpenCL are compatible, inasmuch as HSA is being cast as a “optimized platform architecture for OpenCL.” That means initially, at least, some HSA features will have to be implemented as OpenCL extensions. According to Rogers, some of these features, such as eliminating data copies and low-latency dispatching, will make OpenCL codes more efficient.

The larger issue is that OpenCL is a low-level language that mainstream programmers are generally loathe to use. The high-level feature set of HSA is more in line with Microsoft’s new C++ AMP (Accelerated Massive Parallelism), a C++ extension geared for parallel programming on GPUs. Rogers believes the extension provides a natural programming platform for HSA and a way to leverage the vast C++ code repository. Given the Microsoft intends to fold C++ AMP into Visual Studio and Windows 8 Metro, AMD will potentially have a way to connect HSA with the enormous contingent of Windows developers and users.

The question remains whether Intel, NVIDIA and at least some of the ARM vendors will buy into AMD’s version of heterogeneous computing. Although Rogers said they have passed the HSA spec along to some of its competitors and received some feedback, AMD is not ready to name names. In general, Intel and NVIDIA are willing to embrace any open standard that their customer base is willing to adopt, but each also has in-house parallel frameworks to tout — CUDA for NVIDIA, and Threading Building Blocks and Cilk Plus for Intel — all of which are potentially hardware-agnostic. With AMD throwing HSA on the table, the competition for parallel computing mindshare just gets a little more interesting.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Scalable Informatics Ceases Operations

March 23, 2017

On the same day we reported on the uncertain future for HPC compiler company PathScale, we are sad to learn that another HPC vendor, Scalable Informatics, is closing its doors. Read more…

By Tiffany Trader

‘Strategies in Biomedical Data Science’ Advances IT-Research Synergies

March 23, 2017

“Strategies in Biomedical Data Science: Driving Force for Innovation” by Jay A. Etchings is both an introductory text and a field guide for anyone working with biomedical data. Read more…

By Tiffany Trader

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Google Launches New Machine Learning Journal

March 22, 2017

On Monday, Google announced plans to launch a new peer review journal and “ecosystem” Read more…

By John Russell

HPE Extreme Performance Solutions

HFT Firms Turn to Co-Location to Gain Competitive Advantage

High-frequency trading (HFT) is a high-speed, high-stakes world where every millisecond matters. Finding ways to execute trades faster than the competition translates directly to greater revenue for firms, brokerages, and exchanges. Read more…

Swiss Researchers Peer Inside Chips with Improved X-Ray Imaging

March 22, 2017

Peering inside semiconductor chips using x-ray imaging isn’t new, but the technique hasn’t been especially good or easy to accomplish. Read more…

By John Russell

LANL Simulation Shows Massive Black Holes Break ‘Speed Limit’

March 21, 2017

A new computer simulation based on codes developed at Los Alamos National Laboratory (LANL) is shedding light on how supermassive black holes could have formed in the early universe contrary to most prior models which impose a limit on how fast these massive ‘objects’ can form. Read more…

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Intel Ships Drives Based on 3D XPoint Non-volatile Memory

March 20, 2017

Intel Corp. has begun shipping new storage drives based on its 3D XPoint non-volatile memory technology as it targets data-driven workloads. Intel’s new Optane solid-state drives, designated P4800X, seek to combine the attributes of memory and storage in the same device. Read more…

By George Leopold

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its assets. Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

New Japanese Supercomputing Project Targets Exascale

March 14, 2017

Another Japanese supercomputing project was revealed this week, this one from emerging supercomputer maker, ExaScaler Inc., and Keio University. The partners are working on an original supercomputer design with exascale aspirations. Read more…

By Tiffany Trader

Nvidia Debuts HGX-1 for Cloud; Announces Fujitsu AI Deal

March 9, 2017

On Monday Nvidia announced a major deal with Fujitsu to help build an AI supercomputer for RIKEN using 24 DGX-1 servers. Read more…

By John Russell

HPC4Mfg Advances State-of-the-Art for American Manufacturing

March 9, 2017

Last Friday (March 3, 2017), the High Performance Computing for Manufacturing (HPC4Mfg) program held an industry engagement day workshop in San Diego, bringing together members of the US manufacturing community, national laboratories and universities to discuss the role of high-performance computing as an innovation engine for American manufacturing. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a new board design for NVLink-equipped Pascal P100 GPUs that will create another entrant to the space currently occupied by Nvidia's DGX-1 system, IBM's "Minsky" platform and the Supermicro SuperServer (1028GQ-TXR). Read more…

By Tiffany Trader

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which will be Japan’s “fastest AI supercomputer,” Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular offerings such as Caffe, Theano, and Torch. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling was pretty much the exclusive realm of the Cray-2 and IBM mainframe class products. That’s changing. We are now seeing an emergence of x86 class server products with exotic plumbing technology ranging from Direct-to-Chip to servers and storage completely immersed in a dielectric fluid. Read more…

By Steve Campbell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Leading Solution Providers

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn’t made the task of parallel programming any easier. Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu’s Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural network training and now they are sharing their implementation with the larger deep learning community. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the campaign. Read more…

By John Russell

IDG to Be Bought by Chinese Investors; IDC to Spin Out HPC Group

January 19, 2017

US-based publishing and investment firm International Data Group, Inc. (IDG) will be acquired by a pair of Chinese investors, China Oceanwide Holdings Group Co., Ltd. Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Intel and Trump Announce $7B for Fab 42 Targeting 7nm

February 8, 2017

In what may be an attempt by President Trump to reset his turbulent relationship with the high tech industry, he and Intel CEO Brian Krzanich today announced plans to invest more than $7 billion to complete Fab 42. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This