Thinking Forward: Vivek Wadhwa on Singularity University

By Daniel Araya

February 13, 2012

Vivek Wadhwa is Vice President of Academics and Innovation at Singularity University, an institution that educates a select group of leaders about exponentially growing technologies. He is also a Visiting Scholar, School of Information, UC-Berkeley; Director of Research, Center for Entrepreneurship and Research Commercialization, and Exec in Residence, Pratt School of Engineering, Duke University; Senior Research Associate, Labor and Worklife Program, Harvard Law School; Distinguished Visiting Scholar, Halle Institute of Global Learning, Emory University. Outside of academia, Wadhwa is a regular columnist for The Washington Post, Bloomberg, and BusinessWeek, and writes occasionally for several international publications. His work has been cited in more than 2,000 national and international media outlets over the past five years and has garnered the attention of policy makers.

In this interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences, Wadhwa describes his thoughts on the culture of Silicon Valley, Singularity University, the rising costs of education, and the rapid evolution of technology.

Daniel Araya: Thanks for sitting down with me Vivek. Could I ask you to describe your background, particularly your current role at Singularity University?

Vivek Wadhwa: I am a tech entrepreneur turned academic. I built two software companies before joining academia in 2005. As Vice President of Information Services for CS First Boston, I spearheaded the technology development of new computer systems that became the product of Seer Technologies. As Seer’s Executive Vice President and Chief Technology Officer, I helped grow the nascent startup into a publicly traded company. Subsequently, I founded Relativity Technologies. At Singularity University, I am Vice President of Academics and Innovation, overseeing faculty and curriculum development and international outreach.

Araya: You’ve recently been described as the most “provocative” voice in Silicon Valley. Why is this? Is Silicon Valley simply too conservative on issues related to race and gender?

Wadhwa: I suspect this is because I have been challenging the powers that be, forcing them to face the harsh realities. The fact is that women, blacks and Hispanics are left out. This should not be.

I am also an outsider who has been looking at the Valley’s strengths and weaknesses from an academic perspective. I used to think Silicon Valley was a model meritocracy. From 1995 to 2005, 52 percent of the Valley’s startups were founded by people born abroad. Immigrants from India had become the dominant company-founding immigrant group. They had achieved this by mastering the Valley’s rules of engagement and building their own mentoring networks.

When I researched the dearth of women, however, I could find no explanation. Women are equally motivated to become entrepreneurs; are equal or more competent at managing businesses; match boys in mathematical achievement; dramatically outnumber men in higher education; and receive more than 50 percent of the bachelor’s and master’s degrees, and nearly 50 percent of all doctorates, in the U.S.

One of the most vibrant networking groups for women in Silicon Valley is Women 2.0. Its founder, Shaherose Charania, has been working tirelessly to overcome the lack of gender diversity in the startup world. She learned the power of networking by volunteering with TiE [The Indus Entrepreneurs], a mentoring group founded by Indians, Silicon Valley’s most successful immigrant group.

Araya: Could you tell us something about the story behind Singularity University? How would you describe the mission and goals of Singularity?

Wadhwa: I’ll answer this from a personal perspective. I visited Singularity University about a year ago. I learned that the world of technology is moving much faster than I imagined. That technologies that I thought were still in the realm of science fiction are becoming science fact.

I am not alone. Most people in one field don’t understand advances in another and that is what Singularity University is all about. Advances in fields such as robotics, AI, computing, synthetic biology, 3D printing, medicine and nanomaterials are allowing small teams to do what was only once possible by governments and large corporations.

These exponential technologies will allow us to address many of the grand challenges: Education, Water, Food, Shelter, Health and Security. And the next billion dollar businesses will be built at the intersection of these exponential technologies.

I realized, after visiting Singularity University that this is the most innovative period in human history and that in the next 10 to 20 years will be when we solve many of these grand challenges.

Singularity University teaches people about these advances so that we can leverage them to better humanity. Our mission is to assemble, educate, and inspire a new generation of leaders in business, science, finance, and government who strive to understand and utilize exponentially advancing technologies.

Founding Partners include Autodesk, Cisco, Google, the Kauffman Foundation, Nokia, and ePlanet Ventures. Since its founding in 2009, Singularity University has hosted students and industry leaders from 40 countries at its campus at NASA Research Park, Moffett Field, California.

Araya: There is a growing controversy around higher education today. I know that you believe technology has a critical role to play in shaping learning and education in the decades to come. Could you elaborate on this?

Wadhwa: If ever it was time for an education revolution, that time is now. Americans are becoming disenchanted with higher education. They say it lacks relevance and isn’t cost justified and that therefore we should send fewer children to college. They blame universities for skyrocketing education costs. That is what I’ve learned, the hard way, in my effort to defend America’s education system.

This is misguided thinking. The jobs of tomorrow will require this education. The question is what do we do about costs? The answer is that we need to leverage new technologies. The platform for delivering education is the tablet computer. This is becoming ever cheaper and even more powerful. We can teach by taking people into virtual worlds and playing games, for example. Many new techniques will become possible and we need to be constantly asking how we can improve education, not who should receive it.

Araya: How do you see advanced computing influencing the kinds of interdisciplinary research and innovation that can be done?

Wadhwa: As I mentioned before, there are many exponentially advancing technologies that are converging. Now that the genome can be sequenced relatively inexpensively, we can apply computing to medicine for example; we can combine robotics with AI and computing. These interdisciplinary advances will help us solve many of humanity’s greatest challenges.

As my colleague Neil Jacobstein, who co-chairs the Artificial Intelligence and Robotics program at Singularity University explains, there are three exponentially accelerating technologies — artificial intelligence, robotics, and digital manufacturing — that will reshape the competitive landscape for manufacturing. Specifically, these technologies will make manufacturing more creative, less expensive, more local and more personal.

AI is software that makes computers do things that, if humans did them, we would call them intelligent. This is the technology that IBM’s Deep Blue computer used to beat chess grandmaster Garry Kasparov in 1997, and that enabled IBM’s Watson to beat TV-show Jeopardy champions in 2011. AI is what powers the self-driving car that Google is developing and Apple’s Siri voice-recognition software. As a field, AI is now over 50 years old. People thought AI was dead after all the hype it generated in the ‘80s and failed to deliver. But it is fulfilling its potential now.

Araya: When we consider many of the revolutions in high performance computing, one of the major technology trends that comes to mind is cloud computing. You are somewhat skeptical about cloud computing, however. Could you elaborate on your concerns?

Wadhwa:  Cloud computing is the technology of the future, but it is growing faster than our ability to secure it. We have created an “all you can steal buffet” for organized crime and governments.

Araya: You’ve recently written about the potential for computer automation to change the way China’s manufacturing base operates. As you point out, exponential advances in technology may provide new opportunities for young entrepreneurs but they also threaten the very existence of industries and jobs around the world. What steps could you imagine policymakers taking to begin to mitigate the challenges of automation?

Wadhwa: Advances in fields such as artificial intelligence, robotics, and digital manufacturing are undoubtedly going to revolutionize manufacturing during this decade, enabling us to design and “print” complex products and “manufacture” these in our own homes. Exponentially advancing technologies will provide major new opportunities for entrepreneurs to create world-changing technologies, but they also may threaten jobs around the world.

America has been extremely worried about the loss of manufacturing to China. Seduced by subsidies, cheap labor, lax regulations, and a rigged currency, American industry has made a beeline to China. But the tide may soon turn. New technologies will likely cause the same hollowing out of China’s manufacturing industry over the next two decades that the U.S experienced over the past twenty years. That’s right. America is destined to once again gain its supremacy in manufacturing, and it will soon be China’s turn to worry.

China’s largest hi-tech product manufacturer Taiwan-based Foxconn Technology Group, made waves last August when it announced plans to install one million robots within three years to do the work that its workers presently do. These robots will perform repetitive, mechanical tasks to produce the circuit boards that go in many of the world’s most popular consumer gadgets. But even these robots and circuit boards will soon be obsolete.

What happens when you combine AI, robotics, and digital manufacturing? A manufacturing revolution, that will enable U.S. entrepreneurs to “set up shop” locally, and create a wide variety of products. As Kinko’s is for 2D digital printing on paper, we will have shared public manufacturing facilities like TechShop where you can print your 3D products. How is China going to compete with that?

Policy makers don’t even understand these advances. It is going to have to be entrepreneurs who create the new opportunities. They have to create new jobs, new solutions, new industries. Then the policy makers can sit back and take the credit.

Araya: What, in your view, are some of the unique public policy issues arising with the exponentially evolving technologies?

Wadhwa: There are many ethical, security, and safety issues. What happens when the bad guys start creating viruses targeted at a specific DNA for example?

Araya: In many Asian countries, governments largely direct technology innovation, seeding industries that are then rapidly commoditized. Do you think the U.S. could benefit from a similar industrial policy, as the Obama administration appears to advocate ?

Wadhwa: Government efforts rarely work. Governments can create manufacturing-type industries. They can’t create innovation. Best to fund basic research and leave entrepreneurs to do their magic.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

IBM, D-Wave Report Quantum Computing Advances

May 18, 2017

IBM said this week it has built and tested a pair of quantum computing processors, including a prototype of a commercial version. That progress follows an an Read more…

By George Leopold

PRACEdays 2017 Wraps Up in Barcelona

May 18, 2017

Barcelona has been absolutely lovely; the weather, the food, the people. I am, sadly, finishing my last day at PRACEdays 2017 with two sessions: an in-depth loo Read more…

By Kim McMahon

US, Europe, Japan Deepen Research Computing Partnership

May 18, 2017

On May 17, 2017, a ceremony was held during the PRACEdays 2017 conference in Barcelona to announce the memorandum of understanding (MOU) between PRACE in Europe Read more…

By Tiffany Trader

NSF, IARPA, and SRC Push into “Semiconductor Synthetic Biology” Computing

May 18, 2017

Research into how biological systems might be fashioned into computational technology has a long history with various DNA-based computing approaches explored. N Read more…

By John Russell

HPE Extreme Performance Solutions

Supercomputers Helping Researchers Predict Climate Change

Today’s weather and climate scientists are tasked with analyzing a massive tidal wave of data in order to better understand and predict significant changes affecting the climate. Read more…

DOE’s HPC4Mfg Leads to Paper Manufacturing Improvement

May 17, 2017

Papermaking ranks third behind only petroleum refining and chemical production in terms of energy consumption. Recently, simulations made possible by the U.S. D Read more…

By John Russell

PRACEdays 2017: The start of a beautiful week in Barcelona

May 17, 2017

Touching down in Barcelona on Saturday afternoon, it was warm, sunny, and oh so Spanish. I was greeted at my hotel with a glass of Cava to sip and treated to a Read more…

By Kim McMahon

NSF Issues $60M RFP for “Towards a Leadership-Class” System

May 16, 2017

In case you missed it, the National Science Foundation issued the request for proposals (RFP) for the next ‘Towards a Leadership-Class Computing Facility – Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

Cray Offers Supercomputing as a Service, Targets Biotechs First

May 16, 2017

Leading supercomputer vendor Cray and datacenter/cloud provider the Markley Group today announced plans to jointly deliver supercomputing as a service. The init Read more…

By John Russell

HPE’s Memory-centric The Machine Coming into View, Opens ARMs to 3rd-party Developers

May 16, 2017

Announced three years ago, HPE’s The Machine is said to be the largest R&D program in the venerable company’s history, one that could be progressing tow Read more…

By Doug Black

What’s Up with Hyperion as It Transitions From IDC?

May 15, 2017

If you’re wondering what’s happening with Hyperion Research – formerly the IDC HPC group – apparently you are not alone, says Steve Conway, now senior V Read more…

By John Russell

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

HPE Launches Servers, Services, and Collaboration at GTC

May 10, 2017

Hewlett Packard Enterprise (HPE) today launched a new liquid cooled GPU-driven Apollo platform based on SGI ICE architecture, a new collaboration with NVIDIA, a Read more…

By John Russell

IBM PowerAI Tools Aim to Ease Deep Learning Data Prep, Shorten Training 

May 10, 2017

A new set of GPU-powered AI software announced by IBM today brings automation to many of the tedious, time consuming and complex aspects of AI project on-rampin Read more…

By Doug Black

Bright Computing 8.0 Adds Azure, Expands Machine Learning Support

May 9, 2017

Bright Computing, long a prominent provider of cluster management tools for HPC, today released version 8.0 of Bright Cluster Manager and Bright OpenStack. The Read more…

By John Russell

Microsoft Azure Will Debut Pascal GPU Instances This Year

May 8, 2017

As Nvidia's GPU Technology Conference gets underway in San Jose, Calif., Microsoft today revealed plans to add Pascal-generation GPU horsepower to its Azure clo Read more…

By Tiffany Trader

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

Since our first formal product releases of OSPRay and OpenSWR libraries in 2016, CPU-based Software Defined Visualization (SDVis) has achieved wide-spread adopt Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Last week, Google reported that its custom ASIC Tensor Processing Unit (TPU) was 15-30x faster for inferencing workloads than Nvidia's K80 GPU (see our coverage Read more…

By Tiffany Trader

TSUBAME3.0 Points to Future HPE Pascal-NVLink-OPA Server

February 17, 2017

Since our initial coverage of the TSUBAME3.0 supercomputer yesterday, more details have come to light on this innovative project. Of particular interest is a ne Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is Read more…

By Tiffany Trader

Leading Solution Providers

Tokyo Tech’s TSUBAME3.0 Will Be First HPE-SGI Super

February 16, 2017

In a press event Friday afternoon local time in Japan, Tokyo Institute of Technology (Tokyo Tech) announced its plans for the TSUBAME3.0 supercomputer, which w Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Is Liquid Cooling Ready to Go Mainstream?

February 13, 2017

Lost in the frenzy of SC16 was a substantial rise in the number of vendors showing server oriented liquid cooling technologies. Three decades ago liquid cooling Read more…

By Steve Campbell

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Eng Read more…

By Tiffany Trader

IBM Wants to be “Red Hat” of Deep Learning

January 26, 2017

IBM today announced the addition of TensorFlow and Chainer deep learning frameworks to its PowerAI suite of deep learning tools, which already includes popular Read more…

By John Russell

HPC Startup Advances Auto-Parallelization’s Promise

January 23, 2017

The shift from single core to multicore hardware has made finding parallelism in codes more important than ever, but that hasn't made the task of parallel progr Read more…

By Tiffany Trader

HPC Technique Propels Deep Learning at Scale

February 21, 2017

Researchers from Baidu's Silicon Valley AI Lab (SVAIL) have adapted a well-known HPC communication technique to boost the speed and scale of their neural networ Read more…

By Tiffany Trader

US Supercomputing Leaders Tackle the China Question

March 15, 2017

As China continues to prove its supercomputing mettle via the Top500 list and the forward march of its ambitious plans to stand up an exascale machine by 2020, Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This