Thinking Forward: Vivek Wadhwa on Singularity University

By Daniel Araya

February 13, 2012

Vivek Wadhwa is Vice President of Academics and Innovation at Singularity University, an institution that educates a select group of leaders about exponentially growing technologies. He is also a Visiting Scholar, School of Information, UC-Berkeley; Director of Research, Center for Entrepreneurship and Research Commercialization, and Exec in Residence, Pratt School of Engineering, Duke University; Senior Research Associate, Labor and Worklife Program, Harvard Law School; Distinguished Visiting Scholar, Halle Institute of Global Learning, Emory University. Outside of academia, Wadhwa is a regular columnist for The Washington Post, Bloomberg, and BusinessWeek, and writes occasionally for several international publications. His work has been cited in more than 2,000 national and international media outlets over the past five years and has garnered the attention of policy makers.

In this interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences, Wadhwa describes his thoughts on the culture of Silicon Valley, Singularity University, the rising costs of education, and the rapid evolution of technology.

Daniel Araya: Thanks for sitting down with me Vivek. Could I ask you to describe your background, particularly your current role at Singularity University?

Vivek Wadhwa: I am a tech entrepreneur turned academic. I built two software companies before joining academia in 2005. As Vice President of Information Services for CS First Boston, I spearheaded the technology development of new computer systems that became the product of Seer Technologies. As Seer’s Executive Vice President and Chief Technology Officer, I helped grow the nascent startup into a publicly traded company. Subsequently, I founded Relativity Technologies. At Singularity University, I am Vice President of Academics and Innovation, overseeing faculty and curriculum development and international outreach.

Araya: You’ve recently been described as the most “provocative” voice in Silicon Valley. Why is this? Is Silicon Valley simply too conservative on issues related to race and gender?

Wadhwa: I suspect this is because I have been challenging the powers that be, forcing them to face the harsh realities. The fact is that women, blacks and Hispanics are left out. This should not be.

I am also an outsider who has been looking at the Valley’s strengths and weaknesses from an academic perspective. I used to think Silicon Valley was a model meritocracy. From 1995 to 2005, 52 percent of the Valley’s startups were founded by people born abroad. Immigrants from India had become the dominant company-founding immigrant group. They had achieved this by mastering the Valley’s rules of engagement and building their own mentoring networks.

When I researched the dearth of women, however, I could find no explanation. Women are equally motivated to become entrepreneurs; are equal or more competent at managing businesses; match boys in mathematical achievement; dramatically outnumber men in higher education; and receive more than 50 percent of the bachelor’s and master’s degrees, and nearly 50 percent of all doctorates, in the U.S.

One of the most vibrant networking groups for women in Silicon Valley is Women 2.0. Its founder, Shaherose Charania, has been working tirelessly to overcome the lack of gender diversity in the startup world. She learned the power of networking by volunteering with TiE [The Indus Entrepreneurs], a mentoring group founded by Indians, Silicon Valley’s most successful immigrant group.

Araya: Could you tell us something about the story behind Singularity University? How would you describe the mission and goals of Singularity?

Wadhwa: I’ll answer this from a personal perspective. I visited Singularity University about a year ago. I learned that the world of technology is moving much faster than I imagined. That technologies that I thought were still in the realm of science fiction are becoming science fact.

I am not alone. Most people in one field don’t understand advances in another and that is what Singularity University is all about. Advances in fields such as robotics, AI, computing, synthetic biology, 3D printing, medicine and nanomaterials are allowing small teams to do what was only once possible by governments and large corporations.

These exponential technologies will allow us to address many of the grand challenges: Education, Water, Food, Shelter, Health and Security. And the next billion dollar businesses will be built at the intersection of these exponential technologies.

I realized, after visiting Singularity University that this is the most innovative period in human history and that in the next 10 to 20 years will be when we solve many of these grand challenges.

Singularity University teaches people about these advances so that we can leverage them to better humanity. Our mission is to assemble, educate, and inspire a new generation of leaders in business, science, finance, and government who strive to understand and utilize exponentially advancing technologies.

Founding Partners include Autodesk, Cisco, Google, the Kauffman Foundation, Nokia, and ePlanet Ventures. Since its founding in 2009, Singularity University has hosted students and industry leaders from 40 countries at its campus at NASA Research Park, Moffett Field, California.

Araya: There is a growing controversy around higher education today. I know that you believe technology has a critical role to play in shaping learning and education in the decades to come. Could you elaborate on this?

Wadhwa: If ever it was time for an education revolution, that time is now. Americans are becoming disenchanted with higher education. They say it lacks relevance and isn’t cost justified and that therefore we should send fewer children to college. They blame universities for skyrocketing education costs. That is what I’ve learned, the hard way, in my effort to defend America’s education system.

This is misguided thinking. The jobs of tomorrow will require this education. The question is what do we do about costs? The answer is that we need to leverage new technologies. The platform for delivering education is the tablet computer. This is becoming ever cheaper and even more powerful. We can teach by taking people into virtual worlds and playing games, for example. Many new techniques will become possible and we need to be constantly asking how we can improve education, not who should receive it.

Araya: How do you see advanced computing influencing the kinds of interdisciplinary research and innovation that can be done?

Wadhwa: As I mentioned before, there are many exponentially advancing technologies that are converging. Now that the genome can be sequenced relatively inexpensively, we can apply computing to medicine for example; we can combine robotics with AI and computing. These interdisciplinary advances will help us solve many of humanity’s greatest challenges.

As my colleague Neil Jacobstein, who co-chairs the Artificial Intelligence and Robotics program at Singularity University explains, there are three exponentially accelerating technologies — artificial intelligence, robotics, and digital manufacturing — that will reshape the competitive landscape for manufacturing. Specifically, these technologies will make manufacturing more creative, less expensive, more local and more personal.

AI is software that makes computers do things that, if humans did them, we would call them intelligent. This is the technology that IBM’s Deep Blue computer used to beat chess grandmaster Garry Kasparov in 1997, and that enabled IBM’s Watson to beat TV-show Jeopardy champions in 2011. AI is what powers the self-driving car that Google is developing and Apple’s Siri voice-recognition software. As a field, AI is now over 50 years old. People thought AI was dead after all the hype it generated in the ‘80s and failed to deliver. But it is fulfilling its potential now.

Araya: When we consider many of the revolutions in high performance computing, one of the major technology trends that comes to mind is cloud computing. You are somewhat skeptical about cloud computing, however. Could you elaborate on your concerns?

Wadhwa:  Cloud computing is the technology of the future, but it is growing faster than our ability to secure it. We have created an “all you can steal buffet” for organized crime and governments.

Araya: You’ve recently written about the potential for computer automation to change the way China’s manufacturing base operates. As you point out, exponential advances in technology may provide new opportunities for young entrepreneurs but they also threaten the very existence of industries and jobs around the world. What steps could you imagine policymakers taking to begin to mitigate the challenges of automation?

Wadhwa: Advances in fields such as artificial intelligence, robotics, and digital manufacturing are undoubtedly going to revolutionize manufacturing during this decade, enabling us to design and “print” complex products and “manufacture” these in our own homes. Exponentially advancing technologies will provide major new opportunities for entrepreneurs to create world-changing technologies, but they also may threaten jobs around the world.

America has been extremely worried about the loss of manufacturing to China. Seduced by subsidies, cheap labor, lax regulations, and a rigged currency, American industry has made a beeline to China. But the tide may soon turn. New technologies will likely cause the same hollowing out of China’s manufacturing industry over the next two decades that the U.S experienced over the past twenty years. That’s right. America is destined to once again gain its supremacy in manufacturing, and it will soon be China’s turn to worry.

China’s largest hi-tech product manufacturer Taiwan-based Foxconn Technology Group, made waves last August when it announced plans to install one million robots within three years to do the work that its workers presently do. These robots will perform repetitive, mechanical tasks to produce the circuit boards that go in many of the world’s most popular consumer gadgets. But even these robots and circuit boards will soon be obsolete.

What happens when you combine AI, robotics, and digital manufacturing? A manufacturing revolution, that will enable U.S. entrepreneurs to “set up shop” locally, and create a wide variety of products. As Kinko’s is for 2D digital printing on paper, we will have shared public manufacturing facilities like TechShop where you can print your 3D products. How is China going to compete with that?

Policy makers don’t even understand these advances. It is going to have to be entrepreneurs who create the new opportunities. They have to create new jobs, new solutions, new industries. Then the policy makers can sit back and take the credit.

Araya: What, in your view, are some of the unique public policy issues arising with the exponentially evolving technologies?

Wadhwa: There are many ethical, security, and safety issues. What happens when the bad guys start creating viruses targeted at a specific DNA for example?

Araya: In many Asian countries, governments largely direct technology innovation, seeding industries that are then rapidly commoditized. Do you think the U.S. could benefit from a similar industrial policy, as the Obama administration appears to advocate ?

Wadhwa: Government efforts rarely work. Governments can create manufacturing-type industries. They can’t create innovation. Best to fund basic research and leave entrepreneurs to do their magic.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has been unveiled in upstate New York that will be used by IBM Read more…

By Doug Black

At SC19: Developing a Digital Twin

December 11, 2019

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location to location. In such a world, there will also be a digita Read more…

By Aaron Dubrow

Supercomputers Help Predict Carbon Dioxide Levels

December 10, 2019

The Earth’s terrestrial ecosystems – its lands, forests, jungles and so on – are crucial “sinks” for atmospheric carbon, holding nearly 30 percent of our annual CO2 emissions as they breathe in the carbon-rich Read more…

By Oliver Peckham

Finally! SC19 Competitors Live and in Color!

December 10, 2019

You know the saying “better late than never”? That’s how my cluster competition coverage is faring this year. With SC19 coming late in November, quickly followed by my annual trip to South Africa to cover their clu Read more…

By Dan Olds

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum processor chips. The new controller is a mixed-signal SoC named Ho Read more…

By John Russell

AWS Solution Channel

Making High Performance Computing Affordable and Accessible for Small and Medium Businesses with HPC on AWS

High performance computing (HPC) brings a powerful set of tools to a broad range of industries, helping to drive innovation and boost revenue in finance, genomics, oil and gas extraction, and other fields. Read more…

IBM Accelerated Insights

GPU Scheduling and Resource Accounting: The Key to an Efficient AI Data Center

[Connect with LSF users and learn new skills in the IBM Spectrum LSF User Community!]

GPUs are the new CPUs

GPUs have become a staple technology in modern HPC and AI data centers. Read more…

What’s New in HPC Research: Natural Gas, Precision Agriculture, Neural Networks and More

December 6, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

RPI Powers Up ‘AiMOS’ AI Supercomputer

December 11, 2019

Designed to push the frontiers of computing chip and systems performance optimized for AI workloads, an 8 petaflops (Linpack) IBM Power9-based supercomputer has Read more…

By Doug Black

Intel’s Jim Clarke on its New Cryo-controller and why Intel isn’t Late to the Quantum Party

December 9, 2019

Intel today introduced the ‘first-of-its-kind’ cryo-controller chip for quantum computing and previewed a cryo-prober tool for characterizing quantum proces Read more…

By John Russell

On the Spack Track @SC19

December 5, 2019

At the annual supercomputing conference, SC19 in Denver, Colorado, there were Spack events each day of the conference. As a reflection of its grassroots heritage, nine sessions were planned by more than a dozen thought leaders from seven organizations, including three U.S. national Department of Energy (DOE) laboratories and Sylabs... Read more…

By Elizabeth Leake

Intel’s New Hyderabad Design Center Targets Exascale Era Technologies

December 3, 2019

Intel's Raja Koduri was in India this week to help launch a new 300,000 square foot design and engineering center in Hyderabad, which will focus on advanced com Read more…

By Tiffany Trader

AWS Debuts 7nm 2nd-Gen Graviton Arm Processor

December 3, 2019

The “x86 Big Bang,” in which market dominance of the venerable Intel CPU has exploded into fragments of processor options suited to varying workloads, has n Read more…

By Doug Black

Ride on the Wild Side – Squyres SC19 Mars Rovers Keynote

December 2, 2019

Reminding us of the deep and enabling connection between HPC and modern science is an important part of the SC Conference mission. And yes, HPC is a science its Read more…

By John Russell

NSCI Update – Adapting to a Changing Landscape

December 2, 2019

It was November of 2017 when we last visited the topic of the National Strategic Computing Initiative (NSCI). As you will recall, the NSCI was started with an Executive Order (E.O. No. 13702), that was issued by President Obama in July of 2015 and was followed by a Strategic Plan that was released in July of 2016. The question for November of 2017... Read more…

By Alex R. Larzelere

Tsinghua University Racks Up Its Ninth Student Cluster Championship Win at SC19

November 27, 2019

Tsinghua University has done it again. At SC19 last week, the eight-time gold medal-winner team took home the top prize in the 2019 Student Cluster Competition Read more…

By Oliver Peckham

Using AI to Solve One of the Most Prevailing Problems in CFD

October 17, 2019

How can artificial intelligence (AI) and high-performance computing (HPC) solve mesh generation, one of the most commonly referenced problems in computational engineering? A new study has set out to answer this question and create an industry-first AI-mesh application... Read more…

By James Sharpe

D-Wave’s Path to 5000 Qubits; Google’s Quantum Supremacy Claim

September 24, 2019

On the heels of IBM’s quantum news last week come two more quantum items. D-Wave Systems today announced the name of its forthcoming 5000-qubit system, Advantage (yes the name choice isn’t serendipity), at its user conference being held this week in Newport, RI. Read more…

By John Russell

DARPA Looks to Propel Parallelism

September 4, 2019

As Moore’s law runs out of steam, new programming approaches are being pursued with the goal of greater hardware performance with less coding. The Defense Advanced Projects Research Agency is launching a new programming effort aimed at leveraging the benefits of massive distributed parallelism with less sweat. Read more…

By George Leopold

Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot Chips

August 19, 2019

Silicon startup Ayar Labs continues to gain momentum with its DARPA-backed optical chiplet technology that puts advanced electronics and optics on the same chip Read more…

By Tiffany Trader

SC19: IBM Changes Its HPC-AI Game Plan

November 25, 2019

It’s probably fair to say IBM is known for big bets. Summit supercomputer – a big win. Red Hat acquisition – looking like a big win. OpenPOWER and Power processors – jury’s out? At SC19, long-time IBMer Dave Turek sketched out a different kind of bet for Big Blue – a small ball strategy, if you’ll forgive the baseball analogy... Read more…

By John Russell

Cray, Fujitsu Both Bringing Fujitsu A64FX-based Supercomputers to Market in 2020

November 12, 2019

The number of top-tier HPC systems makers has shrunk due to a steady march of M&A activity, but there is increased diversity and choice of processing compon Read more…

By Tiffany Trader

Crystal Ball Gazing: IBM’s Vision for the Future of Computing

October 14, 2019

Dario Gil, IBM’s relatively new director of research, painted a intriguing portrait of the future of computing along with a rough idea of how IBM thinks we’ Read more…

By John Russell

Intel Debuts New GPU – Ponte Vecchio – and Outlines Aspirations for oneAPI

November 17, 2019

Intel today revealed a few more details about its forthcoming Xe line of GPUs – the top SKU is named Ponte Vecchio and will be used in Aurora, the first plann Read more…

By John Russell

Leading Solution Providers

SC 2019 Virtual Booth Video Tour

AMD
AMD
CEJN
CJEN
ONE STOP SYSTEMS
ONE STOP SYSTEMS
PANASAS
PANASAS
SIX NINES IT
SIX NINES IT
VERNE GLOBAL
VERNE GLOBAL
WEKAIO
WEKAIO

Kubernetes, Containers and HPC

September 19, 2019

Software containers and Kubernetes are important tools for building, deploying, running and managing modern enterprise applications at scale and delivering enterprise software faster and more reliably to the end user — while using resources more efficiently and reducing costs. Read more…

By Daniel Gruber, Burak Yenier and Wolfgang Gentzsch, UberCloud

Dell Ramps Up HPC Testing of AMD Rome Processors

October 21, 2019

Dell Technologies is wading deeper into the AMD-based systems market with a growing evaluation program for the latest Epyc (Rome) microprocessors from AMD. In a Read more…

By John Russell

Cray Wins NNSA-Livermore ‘El Capitan’ Exascale Contract

August 13, 2019

Cray has won the bid to build the first exascale supercomputer for the National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laborator Read more…

By Tiffany Trader

SC19: Welcome to Denver

November 17, 2019

A significant swath of the HPC community has come to Denver for SC19, which began today (Sunday) with a rich technical program. As is customary, the ribbon cutt Read more…

By Tiffany Trader

When Dense Matrix Representations Beat Sparse

September 9, 2019

In our world filled with unintended consequences, it turns out that saving memory space to help deal with GPU limitations, knowing it introduces performance pen Read more…

By James Reinders

With the Help of HPC, Astronomers Prepare to Deflect a Real Asteroid

September 26, 2019

For years, NASA has been running simulations of asteroid impacts to understand the risks (and likelihoods) of asteroids colliding with Earth. Now, NASA and the European Space Agency (ESA) are preparing for the next, crucial step in planetary defense against asteroid impacts: physically deflecting a real asteroid. Read more…

By Oliver Peckham

Cerebras to Supply DOE with Wafer-Scale AI Supercomputing Technology

September 17, 2019

Cerebras Systems, which debuted its wafer-scale AI silicon at Hot Chips last month, has entered into a multi-year partnership with Argonne National Laboratory and Lawrence Livermore National Laboratory as part of a larger collaboration with the U.S. Department of Energy... Read more…

By Tiffany Trader

Jensen Huang’s SC19 – Fast Cars, a Strong Arm, and Aiming for the Cloud(s)

November 20, 2019

We’ve come to expect Nvidia CEO Jensen Huang’s annual SC keynote to contain stunning graphics and lively bravado (with plenty of examples) in support of GPU Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This