Thinking Forward: Vivek Wadhwa on Singularity University

By Daniel Araya

February 13, 2012

Vivek Wadhwa is Vice President of Academics and Innovation at Singularity University, an institution that educates a select group of leaders about exponentially growing technologies. He is also a Visiting Scholar, School of Information, UC-Berkeley; Director of Research, Center for Entrepreneurship and Research Commercialization, and Exec in Residence, Pratt School of Engineering, Duke University; Senior Research Associate, Labor and Worklife Program, Harvard Law School; Distinguished Visiting Scholar, Halle Institute of Global Learning, Emory University. Outside of academia, Wadhwa is a regular columnist for The Washington Post, Bloomberg, and BusinessWeek, and writes occasionally for several international publications. His work has been cited in more than 2,000 national and international media outlets over the past five years and has garnered the attention of policy makers.

In this interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences, Wadhwa describes his thoughts on the culture of Silicon Valley, Singularity University, the rising costs of education, and the rapid evolution of technology.

Daniel Araya: Thanks for sitting down with me Vivek. Could I ask you to describe your background, particularly your current role at Singularity University?

Vivek Wadhwa: I am a tech entrepreneur turned academic. I built two software companies before joining academia in 2005. As Vice President of Information Services for CS First Boston, I spearheaded the technology development of new computer systems that became the product of Seer Technologies. As Seer’s Executive Vice President and Chief Technology Officer, I helped grow the nascent startup into a publicly traded company. Subsequently, I founded Relativity Technologies. At Singularity University, I am Vice President of Academics and Innovation, overseeing faculty and curriculum development and international outreach.

Araya: You’ve recently been described as the most “provocative” voice in Silicon Valley. Why is this? Is Silicon Valley simply too conservative on issues related to race and gender?

Wadhwa: I suspect this is because I have been challenging the powers that be, forcing them to face the harsh realities. The fact is that women, blacks and Hispanics are left out. This should not be.

I am also an outsider who has been looking at the Valley’s strengths and weaknesses from an academic perspective. I used to think Silicon Valley was a model meritocracy. From 1995 to 2005, 52 percent of the Valley’s startups were founded by people born abroad. Immigrants from India had become the dominant company-founding immigrant group. They had achieved this by mastering the Valley’s rules of engagement and building their own mentoring networks.

When I researched the dearth of women, however, I could find no explanation. Women are equally motivated to become entrepreneurs; are equal or more competent at managing businesses; match boys in mathematical achievement; dramatically outnumber men in higher education; and receive more than 50 percent of the bachelor’s and master’s degrees, and nearly 50 percent of all doctorates, in the U.S.

One of the most vibrant networking groups for women in Silicon Valley is Women 2.0. Its founder, Shaherose Charania, has been working tirelessly to overcome the lack of gender diversity in the startup world. She learned the power of networking by volunteering with TiE [The Indus Entrepreneurs], a mentoring group founded by Indians, Silicon Valley’s most successful immigrant group.

Araya: Could you tell us something about the story behind Singularity University? How would you describe the mission and goals of Singularity?

Wadhwa: I’ll answer this from a personal perspective. I visited Singularity University about a year ago. I learned that the world of technology is moving much faster than I imagined. That technologies that I thought were still in the realm of science fiction are becoming science fact.

I am not alone. Most people in one field don’t understand advances in another and that is what Singularity University is all about. Advances in fields such as robotics, AI, computing, synthetic biology, 3D printing, medicine and nanomaterials are allowing small teams to do what was only once possible by governments and large corporations.

These exponential technologies will allow us to address many of the grand challenges: Education, Water, Food, Shelter, Health and Security. And the next billion dollar businesses will be built at the intersection of these exponential technologies.

I realized, after visiting Singularity University that this is the most innovative period in human history and that in the next 10 to 20 years will be when we solve many of these grand challenges.

Singularity University teaches people about these advances so that we can leverage them to better humanity. Our mission is to assemble, educate, and inspire a new generation of leaders in business, science, finance, and government who strive to understand and utilize exponentially advancing technologies.

Founding Partners include Autodesk, Cisco, Google, the Kauffman Foundation, Nokia, and ePlanet Ventures. Since its founding in 2009, Singularity University has hosted students and industry leaders from 40 countries at its campus at NASA Research Park, Moffett Field, California.

Araya: There is a growing controversy around higher education today. I know that you believe technology has a critical role to play in shaping learning and education in the decades to come. Could you elaborate on this?

Wadhwa: If ever it was time for an education revolution, that time is now. Americans are becoming disenchanted with higher education. They say it lacks relevance and isn’t cost justified and that therefore we should send fewer children to college. They blame universities for skyrocketing education costs. That is what I’ve learned, the hard way, in my effort to defend America’s education system.

This is misguided thinking. The jobs of tomorrow will require this education. The question is what do we do about costs? The answer is that we need to leverage new technologies. The platform for delivering education is the tablet computer. This is becoming ever cheaper and even more powerful. We can teach by taking people into virtual worlds and playing games, for example. Many new techniques will become possible and we need to be constantly asking how we can improve education, not who should receive it.

Araya: How do you see advanced computing influencing the kinds of interdisciplinary research and innovation that can be done?

Wadhwa: As I mentioned before, there are many exponentially advancing technologies that are converging. Now that the genome can be sequenced relatively inexpensively, we can apply computing to medicine for example; we can combine robotics with AI and computing. These interdisciplinary advances will help us solve many of humanity’s greatest challenges.

As my colleague Neil Jacobstein, who co-chairs the Artificial Intelligence and Robotics program at Singularity University explains, there are three exponentially accelerating technologies — artificial intelligence, robotics, and digital manufacturing — that will reshape the competitive landscape for manufacturing. Specifically, these technologies will make manufacturing more creative, less expensive, more local and more personal.

AI is software that makes computers do things that, if humans did them, we would call them intelligent. This is the technology that IBM’s Deep Blue computer used to beat chess grandmaster Garry Kasparov in 1997, and that enabled IBM’s Watson to beat TV-show Jeopardy champions in 2011. AI is what powers the self-driving car that Google is developing and Apple’s Siri voice-recognition software. As a field, AI is now over 50 years old. People thought AI was dead after all the hype it generated in the ‘80s and failed to deliver. But it is fulfilling its potential now.

Araya: When we consider many of the revolutions in high performance computing, one of the major technology trends that comes to mind is cloud computing. You are somewhat skeptical about cloud computing, however. Could you elaborate on your concerns?

Wadhwa:  Cloud computing is the technology of the future, but it is growing faster than our ability to secure it. We have created an “all you can steal buffet” for organized crime and governments.

Araya: You’ve recently written about the potential for computer automation to change the way China’s manufacturing base operates. As you point out, exponential advances in technology may provide new opportunities for young entrepreneurs but they also threaten the very existence of industries and jobs around the world. What steps could you imagine policymakers taking to begin to mitigate the challenges of automation?

Wadhwa: Advances in fields such as artificial intelligence, robotics, and digital manufacturing are undoubtedly going to revolutionize manufacturing during this decade, enabling us to design and “print” complex products and “manufacture” these in our own homes. Exponentially advancing technologies will provide major new opportunities for entrepreneurs to create world-changing technologies, but they also may threaten jobs around the world.

America has been extremely worried about the loss of manufacturing to China. Seduced by subsidies, cheap labor, lax regulations, and a rigged currency, American industry has made a beeline to China. But the tide may soon turn. New technologies will likely cause the same hollowing out of China’s manufacturing industry over the next two decades that the U.S experienced over the past twenty years. That’s right. America is destined to once again gain its supremacy in manufacturing, and it will soon be China’s turn to worry.

China’s largest hi-tech product manufacturer Taiwan-based Foxconn Technology Group, made waves last August when it announced plans to install one million robots within three years to do the work that its workers presently do. These robots will perform repetitive, mechanical tasks to produce the circuit boards that go in many of the world’s most popular consumer gadgets. But even these robots and circuit boards will soon be obsolete.

What happens when you combine AI, robotics, and digital manufacturing? A manufacturing revolution, that will enable U.S. entrepreneurs to “set up shop” locally, and create a wide variety of products. As Kinko’s is for 2D digital printing on paper, we will have shared public manufacturing facilities like TechShop where you can print your 3D products. How is China going to compete with that?

Policy makers don’t even understand these advances. It is going to have to be entrepreneurs who create the new opportunities. They have to create new jobs, new solutions, new industries. Then the policy makers can sit back and take the credit.

Araya: What, in your view, are some of the unique public policy issues arising with the exponentially evolving technologies?

Wadhwa: There are many ethical, security, and safety issues. What happens when the bad guys start creating viruses targeted at a specific DNA for example?

Araya: In many Asian countries, governments largely direct technology innovation, seeding industries that are then rapidly commoditized. Do you think the U.S. could benefit from a similar industrial policy, as the Obama administration appears to advocate ?

Wadhwa: Government efforts rarely work. Governments can create manufacturing-type industries. They can’t create innovation. Best to fund basic research and leave entrepreneurs to do their magic.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

STEM-Trekker Badisa Mosesane Attends CERN Summer Student Program

June 27, 2017

Badisa Mosesane, an undergraduate scholar who studies computer science at the University of Botswana in Gaborone, recently joined other students from developing nations around the world in Geneva, Switzerland to particip Read more…

By Elizabeth Leake, STEM-Trek

The EU Human Brain Project Reboots but Supercomputing Still Needed

June 26, 2017

The often contentious, EU-funded Human Brain Project whose initial aim was fixed firmly on full-brain simulation is now in the midst of a reboot targeting a more modest goal – development of informatics tools and data/ Read more…

By John Russell

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a Department of Energy sponsored collaboration between the Univ Read more…

By John Russell

UMass Dartmouth Reports on HPC Day 2017 Activities

June 26, 2017

UMass Dartmouth's Center for Scientific Computing & Visualization Research (CSCVR) organized and hosted the third annual "HPC Day 2017" on May 25th. This annual event showcases on-going scientific research in Massach Read more…

By Gaurav Khanna

HPE Extreme Performance Solutions

Creating a Roadmap for HPC Innovation at ISC 2017

In an era where technological advancements are driving innovation to every sector, and powering major economic and scientific breakthroughs, high performance computing (HPC) is crucial to tackle the challenges of today and tomorrow. Read more…

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “pre-exascale” award), parsed out additional information ab Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid whoops and hollers from the crowd, Thomas Sterling presented t Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out plans to push deeper into climate science and develop more gran Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale companies and their embrace of AI and deep learning – tha Read more…

By Doug Black

DOE Launches Chicago Quantum Exchange

June 26, 2017

While many of us were preoccupied with ISC 2017 last week, the launch of the Chicago Quantum Exchange went largely unnoticed. So what is such a thing? It is a D Read more…

By John Russell

How ‘Knights Mill’ Gets Its Deep Learning Flops

June 22, 2017

Intel, the subject of much speculation regarding the delayed, rewritten or potentially canceled “Aurora” contract (the Argonne Lab part of the CORAL “ Read more…

By Tiffany Trader

Tsinghua Crowned Eight-Time Student Cluster Champions at ISC

June 22, 2017

Always a hard-fought competition, the Student Cluster Competition awards were announced Wednesday, June 21, at the ISC High Performance Conference 2017. Amid wh Read more…

By Kim McMahon

GPUs, Power9, Figure Prominently in IBM’s Bet on Weather Forecasting

June 22, 2017

IBM jumped into the weather forecasting business roughly a year and a half ago by purchasing The Weather Company. This week at ISC 2017, Big Blue rolled out pla Read more…

By John Russell

Intersect 360 at ISC: HPC Industry at $44B by 2021

June 22, 2017

The care, feeding and sustained growth of the HPC industry increasingly is in the hands of the commercial market sector – in particular, it’s the hyperscale Read more…

By Doug Black

At ISC – Goh on Go: Humans Can’t Scale, the Data-Centric Learning Machine Can

June 22, 2017

I've seen the future this week at ISC, it’s on display in prototype or Powerpoint form, and it’s going to dumbfound you. The future is an AI neural network Read more…

By Doug Black

Cray Brings AI and HPC Together on Flagship Supers

June 20, 2017

Cray took one more step toward the convergence of big data and high performance computing (HPC) today when it announced that it’s adding a full suite of big d Read more…

By Alex Woodie

AMD Charges Back into the Datacenter and HPC Workflows with EPYC Processor

June 20, 2017

AMD is charging back into the enterprise datacenter and select HPC workflows with its new EPYC 7000 processor line, code-named Naples, announced today at a “g Read more…

By John Russell

Quantum Bits: D-Wave and VW; Google Quantum Lab; IBM Expands Access

March 21, 2017

For a technology that’s usually characterized as far off and in a distant galaxy, quantum computing has been steadily picking up steam. Just how close real-wo Read more…

By John Russell

Trump Budget Targets NIH, DOE, and EPA; No Mention of NSF

March 16, 2017

President Trump’s proposed U.S. fiscal 2018 budget issued today sharply cuts science spending while bolstering military spending as he promised during the cam Read more…

By John Russell

HPC Compiler Company PathScale Seeks Life Raft

March 23, 2017

HPCwire has learned that HPC compiler company PathScale has fallen on difficult times and is asking the community for help or actively seeking a buyer for its a Read more…

By Tiffany Trader

Google Pulls Back the Covers on Its First Machine Learning Chip

April 6, 2017

This week Google released a report detailing the design and performance characteristics of the Tensor Processing Unit (TPU), its custom ASIC for the inference Read more…

By Tiffany Trader

CPU-based Visualization Positions for Exascale Supercomputing

March 16, 2017

In this contributed perspective piece, Intel’s Jim Jeffers makes the case that CPU-based visualization is now widely adopted and as such is no longer a contrarian view, but is rather an exascale requirement. Read more…

By Jim Jeffers, Principal Engineer and Engineering Leader, Intel

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

Nvidia’s Mammoth Volta GPU Aims High for AI, HPC

May 10, 2017

At Nvidia's GPU Technology Conference (GTC17) in San Jose, Calif., this morning, CEO Jensen Huang announced the company's much-anticipated Volta architecture a Read more…

By Tiffany Trader

Facebook Open Sources Caffe2; Nvidia, Intel Rush to Optimize

April 18, 2017

From its F8 developer conference in San Jose, Calif., today, Facebook announced Caffe2, a new open-source, cross-platform framework for deep learning. Caffe2 is the successor to Caffe, the deep learning framework developed by Berkeley AI Research and community contributors. Read more…

By Tiffany Trader

Leading Solution Providers

MIT Mathematician Spins Up 220,000-Core Google Compute Cluster

April 21, 2017

On Thursday, Google announced that MIT math professor and computational number theorist Andrew V. Sutherland had set a record for the largest Google Compute Engine (GCE) job. Sutherland ran the massive mathematics workload on 220,000 GCE cores using preemptible virtual machine instances. Read more…

By Tiffany Trader

Google Debuts TPU v2 and will Add to Google Cloud

May 25, 2017

Not long after stirring attention in the deep learning/AI community by revealing the details of its Tensor Processing Unit (TPU), Google last week announced the Read more…

By John Russell

Russian Researchers Claim First Quantum-Safe Blockchain

May 25, 2017

The Russian Quantum Center today announced it has overcome the threat of quantum cryptography by creating the first quantum-safe blockchain, securing cryptocurrencies like Bitcoin, along with classified government communications and other sensitive digital transfers. Read more…

By Doug Black

US Supercomputing Leaders Tackle the China Question

March 15, 2017

Joint DOE-NSA report responds to the increased global pressures impacting the competitiveness of U.S. supercomputing. Read more…

By Tiffany Trader

Groq This: New AI Chips to Give GPUs a Run for Deep Learning Money

April 24, 2017

CPUs and GPUs, move over. Thanks to recent revelations surrounding Google’s new Tensor Processing Unit (TPU), the computing world appears to be on the cusp of Read more…

By Alex Woodie

DOE Supercomputer Achieves Record 45-Qubit Quantum Simulation

April 13, 2017

In order to simulate larger and larger quantum systems and usher in an age of “quantum supremacy,” researchers are stretching the limits of today’s most advanced supercomputers. Read more…

By Tiffany Trader

Messina Update: The US Path to Exascale in 16 Slides

April 26, 2017

Paul Messina, director of the U.S. Exascale Computing Project, provided a wide-ranging review of ECP’s evolving plans last week at the HPC User Forum. Read more…

By John Russell

Six Exascale PathForward Vendors Selected; DoE Providing $258M

June 15, 2017

The much-anticipated PathForward awards for hardware R&D in support of the Exascale Computing Project were announced today with six vendors selected – AMD Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This