Thinking Forward: Vivek Wadhwa on Singularity University

By Daniel Araya

February 13, 2012

Vivek Wadhwa is Vice President of Academics and Innovation at Singularity University, an institution that educates a select group of leaders about exponentially growing technologies. He is also a Visiting Scholar, School of Information, UC-Berkeley; Director of Research, Center for Entrepreneurship and Research Commercialization, and Exec in Residence, Pratt School of Engineering, Duke University; Senior Research Associate, Labor and Worklife Program, Harvard Law School; Distinguished Visiting Scholar, Halle Institute of Global Learning, Emory University. Outside of academia, Wadhwa is a regular columnist for The Washington Post, Bloomberg, and BusinessWeek, and writes occasionally for several international publications. His work has been cited in more than 2,000 national and international media outlets over the past five years and has garnered the attention of policy makers.

In this interview for HPCwire, conducted by Daniel Araya of the Institute for Computing in the Humanities, Arts and Social Sciences, Wadhwa describes his thoughts on the culture of Silicon Valley, Singularity University, the rising costs of education, and the rapid evolution of technology.

Daniel Araya: Thanks for sitting down with me Vivek. Could I ask you to describe your background, particularly your current role at Singularity University?

Vivek Wadhwa: I am a tech entrepreneur turned academic. I built two software companies before joining academia in 2005. As Vice President of Information Services for CS First Boston, I spearheaded the technology development of new computer systems that became the product of Seer Technologies. As Seer’s Executive Vice President and Chief Technology Officer, I helped grow the nascent startup into a publicly traded company. Subsequently, I founded Relativity Technologies. At Singularity University, I am Vice President of Academics and Innovation, overseeing faculty and curriculum development and international outreach.

Araya: You’ve recently been described as the most “provocative” voice in Silicon Valley. Why is this? Is Silicon Valley simply too conservative on issues related to race and gender?

Wadhwa: I suspect this is because I have been challenging the powers that be, forcing them to face the harsh realities. The fact is that women, blacks and Hispanics are left out. This should not be.

I am also an outsider who has been looking at the Valley’s strengths and weaknesses from an academic perspective. I used to think Silicon Valley was a model meritocracy. From 1995 to 2005, 52 percent of the Valley’s startups were founded by people born abroad. Immigrants from India had become the dominant company-founding immigrant group. They had achieved this by mastering the Valley’s rules of engagement and building their own mentoring networks.

When I researched the dearth of women, however, I could find no explanation. Women are equally motivated to become entrepreneurs; are equal or more competent at managing businesses; match boys in mathematical achievement; dramatically outnumber men in higher education; and receive more than 50 percent of the bachelor’s and master’s degrees, and nearly 50 percent of all doctorates, in the U.S.

One of the most vibrant networking groups for women in Silicon Valley is Women 2.0. Its founder, Shaherose Charania, has been working tirelessly to overcome the lack of gender diversity in the startup world. She learned the power of networking by volunteering with TiE [The Indus Entrepreneurs], a mentoring group founded by Indians, Silicon Valley’s most successful immigrant group.

Araya: Could you tell us something about the story behind Singularity University? How would you describe the mission and goals of Singularity?

Wadhwa: I’ll answer this from a personal perspective. I visited Singularity University about a year ago. I learned that the world of technology is moving much faster than I imagined. That technologies that I thought were still in the realm of science fiction are becoming science fact.

I am not alone. Most people in one field don’t understand advances in another and that is what Singularity University is all about. Advances in fields such as robotics, AI, computing, synthetic biology, 3D printing, medicine and nanomaterials are allowing small teams to do what was only once possible by governments and large corporations.

These exponential technologies will allow us to address many of the grand challenges: Education, Water, Food, Shelter, Health and Security. And the next billion dollar businesses will be built at the intersection of these exponential technologies.

I realized, after visiting Singularity University that this is the most innovative period in human history and that in the next 10 to 20 years will be when we solve many of these grand challenges.

Singularity University teaches people about these advances so that we can leverage them to better humanity. Our mission is to assemble, educate, and inspire a new generation of leaders in business, science, finance, and government who strive to understand and utilize exponentially advancing technologies.

Founding Partners include Autodesk, Cisco, Google, the Kauffman Foundation, Nokia, and ePlanet Ventures. Since its founding in 2009, Singularity University has hosted students and industry leaders from 40 countries at its campus at NASA Research Park, Moffett Field, California.

Araya: There is a growing controversy around higher education today. I know that you believe technology has a critical role to play in shaping learning and education in the decades to come. Could you elaborate on this?

Wadhwa: If ever it was time for an education revolution, that time is now. Americans are becoming disenchanted with higher education. They say it lacks relevance and isn’t cost justified and that therefore we should send fewer children to college. They blame universities for skyrocketing education costs. That is what I’ve learned, the hard way, in my effort to defend America’s education system.

This is misguided thinking. The jobs of tomorrow will require this education. The question is what do we do about costs? The answer is that we need to leverage new technologies. The platform for delivering education is the tablet computer. This is becoming ever cheaper and even more powerful. We can teach by taking people into virtual worlds and playing games, for example. Many new techniques will become possible and we need to be constantly asking how we can improve education, not who should receive it.

Araya: How do you see advanced computing influencing the kinds of interdisciplinary research and innovation that can be done?

Wadhwa: As I mentioned before, there are many exponentially advancing technologies that are converging. Now that the genome can be sequenced relatively inexpensively, we can apply computing to medicine for example; we can combine robotics with AI and computing. These interdisciplinary advances will help us solve many of humanity’s greatest challenges.

As my colleague Neil Jacobstein, who co-chairs the Artificial Intelligence and Robotics program at Singularity University explains, there are three exponentially accelerating technologies — artificial intelligence, robotics, and digital manufacturing — that will reshape the competitive landscape for manufacturing. Specifically, these technologies will make manufacturing more creative, less expensive, more local and more personal.

AI is software that makes computers do things that, if humans did them, we would call them intelligent. This is the technology that IBM’s Deep Blue computer used to beat chess grandmaster Garry Kasparov in 1997, and that enabled IBM’s Watson to beat TV-show Jeopardy champions in 2011. AI is what powers the self-driving car that Google is developing and Apple’s Siri voice-recognition software. As a field, AI is now over 50 years old. People thought AI was dead after all the hype it generated in the ‘80s and failed to deliver. But it is fulfilling its potential now.

Araya: When we consider many of the revolutions in high performance computing, one of the major technology trends that comes to mind is cloud computing. You are somewhat skeptical about cloud computing, however. Could you elaborate on your concerns?

Wadhwa:  Cloud computing is the technology of the future, but it is growing faster than our ability to secure it. We have created an “all you can steal buffet” for organized crime and governments.

Araya: You’ve recently written about the potential for computer automation to change the way China’s manufacturing base operates. As you point out, exponential advances in technology may provide new opportunities for young entrepreneurs but they also threaten the very existence of industries and jobs around the world. What steps could you imagine policymakers taking to begin to mitigate the challenges of automation?

Wadhwa: Advances in fields such as artificial intelligence, robotics, and digital manufacturing are undoubtedly going to revolutionize manufacturing during this decade, enabling us to design and “print” complex products and “manufacture” these in our own homes. Exponentially advancing technologies will provide major new opportunities for entrepreneurs to create world-changing technologies, but they also may threaten jobs around the world.

America has been extremely worried about the loss of manufacturing to China. Seduced by subsidies, cheap labor, lax regulations, and a rigged currency, American industry has made a beeline to China. But the tide may soon turn. New technologies will likely cause the same hollowing out of China’s manufacturing industry over the next two decades that the U.S experienced over the past twenty years. That’s right. America is destined to once again gain its supremacy in manufacturing, and it will soon be China’s turn to worry.

China’s largest hi-tech product manufacturer Taiwan-based Foxconn Technology Group, made waves last August when it announced plans to install one million robots within three years to do the work that its workers presently do. These robots will perform repetitive, mechanical tasks to produce the circuit boards that go in many of the world’s most popular consumer gadgets. But even these robots and circuit boards will soon be obsolete.

What happens when you combine AI, robotics, and digital manufacturing? A manufacturing revolution, that will enable U.S. entrepreneurs to “set up shop” locally, and create a wide variety of products. As Kinko’s is for 2D digital printing on paper, we will have shared public manufacturing facilities like TechShop where you can print your 3D products. How is China going to compete with that?

Policy makers don’t even understand these advances. It is going to have to be entrepreneurs who create the new opportunities. They have to create new jobs, new solutions, new industries. Then the policy makers can sit back and take the credit.

Araya: What, in your view, are some of the unique public policy issues arising with the exponentially evolving technologies?

Wadhwa: There are many ethical, security, and safety issues. What happens when the bad guys start creating viruses targeted at a specific DNA for example?

Araya: In many Asian countries, governments largely direct technology innovation, seeding industries that are then rapidly commoditized. Do you think the U.S. could benefit from a similar industrial policy, as the Obama administration appears to advocate ?

Wadhwa: Government efforts rarely work. Governments can create manufacturing-type industries. They can’t create innovation. Best to fund basic research and leave entrepreneurs to do their magic.

—–

About the author

Daniel Araya is a Research Fellow in Learning and Innovation with the Institute for Computing in the Humanities, Arts and Social Sciences (I-CHASS) at the National Center for Supercomputing Applications (NCSA). The focus of his research is the confluence of digital technologies and economic globalization on learning and education. He has worked with the Wikimedia Foundation and the Kineo Group in Chicago. In 2011, he received the Hardie Dissertation Award and was selected for the HASTAC Scholars Fellowship. He is currently the co-editor of the Journal of Global Studies in Education. His newest books include: The New Educational Development Paradigm (2012, Peter Lang), Higher Education in the Global Age (2012, Routledge) and Education in the Creative Economy (2010, Peter Lang).

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understanding on January 10. The MOU represents the continuation of a 1 Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Tennessee), Satoshi Matsuoka (Tokyo Institute of Technology), Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown and Spectre security updates on the performance of popular H Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

HPE and NREL Take Steps to Create a Sustainable, Energy-Efficient Data Center with an H2 Fuel Cell

As enterprises attempt to manage rising volumes of data, unplanned data center outages are becoming more common and more expensive. As the cost of downtime rises, enterprises lose out on productivity and valuable competitive advantage without access to their critical data. Read more…

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension around the potential changes that could affect or disrupt Lustre Read more…

By Carlos Aoki Thomaz

UCSD, AIST Forge Tighter Alliance with AI-Focused MOU

January 18, 2018

The rich history of collaboration between UC San Diego and AIST in Japan is getting richer. The organizations entered into a five-year memorandum of understandi Read more…

By Tiffany Trader

New Blueprint for Converging HPC, Big Data

January 18, 2018

After five annual workshops on Big Data and Extreme-Scale Computing (BDEC), a group of international HPC heavyweights including Jack Dongarra (University of Te Read more…

By John Russell

Researchers Measure Impact of ‘Meltdown’ and ‘Spectre’ Patches on HPC Workloads

January 17, 2018

Computer scientists from the Center for Computational Research, State University of New York (SUNY), University at Buffalo have examined the effect of Meltdown Read more…

By Tiffany Trader

Fostering Lustre Advancement Through Development and Contributions

January 17, 2018

Six months after organizational changes at Intel's High Performance Data (HPDD) division, most in the Lustre community have shed any initial apprehension aroun Read more…

By Carlos Aoki Thomaz

When the Chips Are Down

January 11, 2018

In the last article, "The High Stakes Semiconductor Game that Drives HPC Diversity," I alluded to the challenges facing the semiconductor industry and how that may impact the evolution of HPC systems over the next few years. I thought I’d lift the covers a little and look at some of the commercial challenges that impact the component technology we use in HPC. Read more…

By Dairsie Latimer

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

Momentum Builds for US Exascale

January 9, 2018

2018 looks to be a great year for the U.S. exascale program. The last several months of 2017 revealed a number of important developments that help put the U.S. Read more…

By Alex R. Larzelere

ANL’s Rick Stevens on CANDLE, ARM, Quantum, and More

January 8, 2018

Late last year HPCwire caught up with Rick Stevens, associate laboratory director for computing, environment and life Sciences at Argonne National Laboratory, f Read more…

By John Russell

Inventor Claims to Have Solved Floating Point Error Problem

January 17, 2018

"The decades-old floating point error problem has been solved," proclaims a press release from inventor Alan Jorgensen. The computer scientist has filed for and Read more…

By Tiffany Trader

US Coalesces Plans for First Exascale Supercomputer: Aurora in 2021

September 27, 2017

At the Advanced Scientific Computing Advisory Committee (ASCAC) meeting, in Arlington, Va., yesterday (Sept. 26), it was revealed that the "Aurora" supercompute Read more…

By Tiffany Trader

Japan Unveils Quantum Neural Network

November 22, 2017

The U.S. and China are leading the race toward productive quantum computing, but it's early enough that ultimate leadership is still something of an open questi Read more…

By Tiffany Trader

AMD Showcases Growing Portfolio of EPYC and Radeon-based Systems at SC17

November 13, 2017

AMD’s charge back into HPC and the datacenter is on full display at SC17. Having launched the EPYC processor line in June along with its MI25 GPU the focus he Read more…

By John Russell

Nvidia Responds to Google TPU Benchmarking

April 10, 2017

Nvidia highlights strengths of its newest GPU silicon in response to Google's report on the performance and energy advantages of its custom tensor processor. Read more…

By Tiffany Trader

IBM Begins Power9 Rollout with Backing from DOE, Google

December 6, 2017

After over a year of buildup, IBM is unveiling its first Power9 system based on the same architecture as the Department of Energy CORAL supercomputers, Summit a Read more…

By Tiffany Trader

Fast Forward: Five HPC Predictions for 2018

December 21, 2017

What’s on your list of high (and low) lights for 2017? Volta 100’s arrival on the heels of the P100? Appearance, albeit late in the year, of IBM’s Power9? Read more…

By John Russell

GlobalFoundries Puts Wind in AMD’s Sails with 12nm FinFET

September 24, 2017

From its annual tech conference last week (Sept. 20), where GlobalFoundries welcomed more than 600 semiconductor professionals (reaching the Santa Clara venue Read more…

By Tiffany Trader

Leading Solution Providers

Chip Flaws ‘Meltdown’ and ‘Spectre’ Loom Large

January 4, 2018

The HPC and wider tech community have been abuzz this week over the discovery of critical design flaws that impact virtually all contemporary microprocessors. T Read more…

By Tiffany Trader

Perspective: What Really Happened at SC17?

November 22, 2017

SC is over. Now comes the myriad of follow-ups. Inboxes are filled with templated emails from vendors and other exhibitors hoping to win a place in the post-SC thinking of booth visitors. Attendees of tutorials, workshops and other technical sessions will be inundated with requests for feedback. Read more…

By Andrew Jones

Tensors Come of Age: Why the AI Revolution Will Help HPC

November 13, 2017

Thirty years ago, parallel computing was coming of age. A bitter battle began between stalwart vector computing supporters and advocates of various approaches to parallel computing. IBM skeptic Alan Karp, reacting to announcements of nCUBE’s 1024-microprocessor system and Thinking Machines’ 65,536-element array, made a public $100 wager that no one could get a parallel speedup of over 200 on real HPC workloads. Read more…

By John Gustafson & Lenore Mullin

Delays, Smoke, Records & Markets – A Candid Conversation with Cray CEO Peter Ungaro

October 5, 2017

Earlier this month, Tom Tabor, publisher of HPCwire and I had a very personal conversation with Cray CEO Peter Ungaro. Cray has been on something of a Cinderell Read more…

By Tiffany Trader & Tom Tabor

Flipping the Flops and Reading the Top500 Tea Leaves

November 13, 2017

The 50th edition of the Top500 list, the biannual publication of the world’s fastest supercomputers based on public Linpack benchmarking results, was released Read more…

By Tiffany Trader

GlobalFoundries, Ayar Labs Team Up to Commercialize Optical I/O

December 4, 2017

GlobalFoundries (GF) and Ayar Labs, a startup focused on using light, instead of electricity, to transfer data between chips, today announced they've entered in Read more…

By Tiffany Trader

How Meltdown and Spectre Patches Will Affect HPC Workloads

January 10, 2018

There have been claims that the fixes for the Meltdown and Spectre security vulnerabilities, named the KPTI (aka KAISER) patches, are going to affect applicatio Read more…

By Rosemary Francis

HPC Chips – A Veritable Smorgasbord?

October 10, 2017

For the first time since AMD's ill-fated launch of Bulldozer the answer to the question, 'Which CPU will be in my next HPC system?' doesn't have to be 'Whichever variety of Intel Xeon E5 they are selling when we procure'. Read more…

By Dairsie Latimer

  • arrow
  • Click Here for More Headlines
  • arrow
Share This