Cloudnumbers Expedites Cloud-Based Supercomputing

By Tiffany Trader

February 14, 2012

Configuring a cluster on a public cloud infrastructure such as Amazon Web Services potentially requires a lot of work. The various steps involve setting up the machines, dealing with the security keys, installing the applications, negotiating the administration, and more. Most HPC users would prefer to avoid this time-consuming process if possible. That’s where German startup Cloudnumbers comes in. The company provides everything the customer needs to get their HPC applications up and running in a matter of minutes. I recently had the chance to speak with Markus Schmidberger, Senior Community Manager for Cloudnumbers.com GmbH, to find out how.

The history of the Cloudnumbers goes back to Munich circa 2010, when company founders Erik Muttersbach, Markus Fensterer and Moritz v. Petersdorff-Campen began developing their idea for an HPC cloud environment. They contacted Markus Schmidberger in October 2010 after seeing his research on the topic, and further discussed the feasibility of moving HPC workloads to the cloud.

By the end of 2010, the group had written up a business plan and begun implementing a prototype. In March 2011, Cloudnumbers was founded with investment from angel investors. At that time, the company relocated from Munich to Berlin, Germany’s capital city. After an initial testing period of about two months, the company officially launched on July 4, 2011, providing a Web interface for computer clusters in the cloud. As of now, the company has over 1,300 registered users.

If you go to their website, you may notice a beta tag on their offering, but Schmidberger assures me this is a fully-functioning stable release. The beta designation has more to do with German law than any product short-comings. Based on German law, they would have to provide a level of security that is impractical at this stage. The beta label just makes it easier for them to operate in Europe, Schmidberger explained.

In case you’re concerned about security, the core functionality is the responsibility of the IaaS provider, but Cloudnumbers has added an extra security level on top of what Amazon uses. This means that all data are encrypted with 256 bit encryption and all connections between the local hardware and between the machines use SSL encryption. Despite these high levels of security, performance has not been affected in any significant way. It bears mentioning that all aspects of user authentication, personal data, passwords, billing and credit card information are located on a secure server in Germany and not in the cloud, in full compliance with safe harbor requirements.

Cloudnumbers does all the configuration of the computer cluster for their customers. Prospective users can point their browsers to the Web interface, where a five-step process results the configuration of a computer cluster. At that point, the cloud provider starts up the cluster and performs the complete install with all required applications. After that, the customer can access the cluster through any Web interface. “Everything is pre-installed so they don’t need any administration. Basically everything works out of the box,” Schmidberger explains. Setup takes about five minutes, and the entire configuration process takes between 6-10 minutes.

To use the service, customers only need to register with Cloudnumbers. They do not need a separate account with the public cloud provider, so there is only one bill. Every registered user gets five hours free, and after that the service costs about one dollar per hour per CPU. This is slightly more than what Amazon charges, but Cloudnumbers is providing something extra, a preinstalled cluster with preinstalled applications. While Cloudnumbers uses Amazon Web Services as their main Infrastructure-as-a-Service platform, they are currently adding resources from RackSpace and Eucalyptus, and are actively seeking to partner with smaller cloud providers as well.

Cloudnumbers offers pre-installed computer clusters in the cloud with pre-installed applications. Depending on their needs, users can select from R, OpenFoam, Python, Fortan, C/C++, as well as Gromacs, BLAST, Freemat and Perl. These come with the associated libraries for parallel computing, such as all the MPI libraries and so on. “We do all the hard work for setting up the computer cluster in the cloud. It’s integrated in our interface,” notes Schmidberger.

In analyzing the behavior of their customers, Schmidberger finds that about one-third require one shared-memory machine with 8-cores and 64 GB of main memory, and the other two-thirds set up computer clusters with about 10-15 machines. If you look for competitors, you may come across Cycle Computing, which offers very large clusters. In Schmidberger’s experience, Cloudnumbers’ customers haven’t required machines this large. Their customers tend to be of the small-to-medium sized variety, and are thus well-suited to small-to-medium sized clusters. They care about getting their high-performance applications to run on these clusters, Schmidberger’s notes, but are not as interested in the learning the administration side.

With that in mind, it’s perhaps not surprising that many of their customers require consulting services to help ease the transition to the cloud. They want to know how to get their code running in the cloud and then how to get the best performance. Initially, Cloudnumbers only planned to offer the cloud product, consulting was not part of the original business plan. But after receiving numerous requests for assistance, a consulting service was added in October of last year. The bulk of the service involves simple programming support in the way of code optimization, tips and tricks. In most cases, the actual coding is performed by the customers.

“We provide the complete HPC-as-a-Service package for our customers,” Schmidberger says. “We have the support, we have the consulting, and we have the interface and the resources, which they can use.”

To illustrate the way the consulting process works, Schmidberger cites one of their most well-known customers, Gazprom Germania, a holding company for a range of international oil and gas companies. Gazprom has a lot of financial code for risk analysis, based on the statistics software R. Cloudnumbers worked with Gazprom to parallelize the code, with the actual implementation being performed by Gazprom statisticians. After that, Gazprom simply logged into the Cloudnumbers test account, confirmed everything was in order, then switched to on-demand billing and started working on the Cloudnumbers machines.

While some customers require the complete support package, most just log on and get a bill every month. For these, Cloudnumbers doesn’t even know what workloads they are running, nor do they need to know.

The initial premise for the company was to close the gap for high-performance computing in the cloud in Europe. To get into the market in Europe, and to that point, their majority of their customers are from the EU, but they have several from the US, several from China and India. The numbers break down to roughly one-third from Europe and the rest from everywhere else. The diverse customer base includes academia, industry, the finance sector, biology firms, and machine engineering outfits.

Asked whether customers have had any difficulty transferring initial data sets to the cloud, Schmidberger responded that bandwidth was not a problem since, again, the solution is designed for small-to-medium sized companies with average data sets in GB range, not on the level of TB. In fact, Schmidberger estimates they’ve never had a customer with more than 1-2 TB of data. So far, not one of their customers has complained that they’ve had a problem loading data from their local machine into the cloud.

On the somewhat sticky topic of whether HPC workloads are suitable for the cloud, Schmidberger is convinced of the merits of this approach. “While we will continue to require supercomputers for huge analysis runs,” he says “for the small-to-medium sized analysis, HPC works very well in the cloud.”

To get the customer perspective on this new cloud service, I reached out to Dr. Karsten Knothe, IT Project Manager for Gazprom Germania, mentioned earlier. Before moving to Cloudnumbers, Gazprom ran their workloads in-house on a simple desktop-PC with multicore processors. When they started thinking about transitioning to the cloud they briefly considered going directly to Amazon, but they needed more functionality. “For us it’s important to get not only a naked virtual machine but a configured cluster with the needed software installed,” Dr. Knothe comments.

Prior to the cloud transition, one calculation run would take more than 12 hours. “Now we do one calculation in about 15 minutes,” notes Dr. Knothe. Not only do they save time, but the solution allows them to do additional analysis by changing the parameters of their calculation.

Despite being satisfied with these benefits, Dr. Knothe mentioned that he would like to see a few additions to the product. Specifically, he has requested additional communication functions, so that starting and stopping sessions and finishing calculations would trigger an email notification.

Looking ahead, Schmidberger was excited to announce that Cloudnumbers is currently developing a hybrid cloud solution, which offers the promise of “perfect scalability.” Due to privacy or security concerns, many companies have chosen private clouds to run their analyses, but very often those companies have some workloads which would benefit from the cloud. A hybrid approach allows these companies to extend their private cloud with public cloud resources. Currently, the company has a prototype connection in place with Eucalyptus and Amazon, with a connection to OpenNebula in the works as well. A final release should be available soon.

“We set up a very generous framework in the background, which gives us the opportunity to connect to many different Infrastructure-as-a-Service providers,” Schmidberger stated. “So if we get a request from any customer that they have a private cloud running on whatever, we will be able to connect to this cloud within two months.”

As a new company, Cloudnumbers is proactive in seeking customer feedback, which should be good news to Gazprom.

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 8, 2016)

December 8, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

Qualcomm Targets Intel Datacenter Dominance with 10nm ARM-based Server Chip

December 8, 2016

Claiming no less than a reshaping of the future of Intel-dominated datacenter computing, Qualcomm Technologies, the market leader in smartphone chips, announced the forthcoming availability of what it says is the world’s first 10nm processor for servers, based on ARM Holding’s chip designs. Read more…

By Doug Black

Which Schools Produce the Top Coders in the World?

December 8, 2016

Ever wonder which universities worldwide produce the best coders? The answers may surprise you, at least as judged by the results of a competition posted yesterday on the HackerRank blog. Read more…

By John Russell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

US Exascale Computing Update with Paul Messina

December 8, 2016

Around the world, efforts are ramping up to cross the next major computing threshold with machines that are 50-100x more performant than today’s fastest number crunchers.  Read more…

By Tiffany Trader

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. The pilots, supported in part by DOE exascale funding, not only seek to do good by advancing cancer research and therapy but also to advance deep learning capabilities and infrastructure with an eye towards eventual use on exascale machines. Read more…

By John Russell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Leading Solution Providers

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

  • arrow
  • Click Here for More Headlines
  • arrow
Share This