Japanese University Boots Up 800-Teraflop GPU Supercomputer

By Michael Feldman

February 14, 2012

Japan’s newest supercomputer, an 802-teraflop GPU-accelerated Appro cluster, went into production last week at the University of Tsukuba, just north of Tokyo. The machine represents the lynchpin of the university’s HA-PACS project, a three-year effort that will attempt to push the envelope on GPU-pumped supercomputing.

HA-PACS, which stands for Highly Accelerated Parallel Advanced system for Computational Sciences, is just the latest in a series “PACS” systems at the Tsukuba. The original system, known as PACS-9, was installed in 1978 and delivered 7 kiloflops (yes kiloflops!). Every two to four years thereafter, the university’s Center for Computational Sciences upgraded to a new system. The last one, PACS-CS, was deployed in 2006 and topped out at 14.3 teraflops.

The new Appro cluster represents the 8th generation supercomputer at Tsukuba and is the first to be accelerated by GPUs. As you might suspect, the vast majority of the 802 teraflops is provided by the graphics units, in this case, based on the latest NVIDIA Tesla GPU part, the M2090. Each cluster node pairs four of them with two 8-core Xeon E5 (“Sandy Bridge”) CPUs from Intel.

In aggregate, the 268-node HA-PACS machine will house 1072 GPUs and 536 CPUs, as well as a total of 34 terabytes of memory on the CPU side and an additional 6.4 terabytes for the GPUs. External storage amounts to just over half a petabyte, based on DataDirect Network’s SFA10000 gear. As a result of the high computational density afforded by the graphics chips, the entire cluster fits into just 26-racks and draw a little over 400 KW of power.

Using the top-of-the line CPUs and GPUs makes for a dense and powerful cluster, with each node delivering just shy of 3 teraflops (peak) performance. And even though most of the flops are GPU-derived (665 gigaflops per M2090), each Xeon E5 chips in with a respectable 166 gigaflops, thanks to the addition of the new Advanced Vector Extensions (AVX) instructions.

This is Appro’s second big system deployment at Tsukuba, having delivered the 95-teraflop T2K Open Supercomputer there in 2009. That machine used AMD’s quad-core Opterons and no GPUs.

Appro, by the way is one of the few server vendors offering systems equipped with Xeon E5 CPUs these days, and already claims four such systems on the TOP500 list: “Zin” (961 teraflops) at Lawrence Livermore National Lab, “Luna” (293 teraflops) at Los Alamos National Lab, “Gordon” (262 teraflops) at the San Diego Supercomputer Center and “Chama” at Sandia National Labs. That’s a nice accomplishment, considering Intel has yet to officially release the E5 chips into the wild.

CPU’s aside, the main focus for HA-PACS is to draw the most performance from the GPU hardware. The project has a two-pronged mission in this regard: to bring more big science codes to the GPU and to develop a tightly coupled parallel computing acceleration mechanism in order to “further optimize the utility of the graphics hardware.”

On the application side, HA-PACS will be porting codes to the GPU in the areas of subatomic particles, life sciences, astrophysics, nuclear physics and environmental science. For example, astrophysics applications that deal with radiation transfer can take advantage of ray tracing methods, which modern GPUs are tailor-made for. Likewise, for elementary particle physics, GPUs can be used to great advantage to accelerate dense matrix computations.

On the computational research side, the HA-PACS team is in the process of developing custom hardware to support direct communications between the GPUs. The idea is to enable the graphics processors to quickly shuffle data between themselves without the overhead involved in going through the CPU.

This custom hardware, known as the Tightly Coupled Accelerator (TCA), will be distinct from the HA-PACS base cluster from Appro, but will eventually be integrated with it, says Taisuke Boku, deputy director of Center for Computational Sciences at University of Tsukuba. According to him, TCA will use PCIe as a communication channel between the GPUs and employ FPGA technology to facilitate this.

The FPGA will be based on an existing implementation developed at Tsukuba called PEACH, which stands for PCI Express Adaptive Communication Hub. The idea is to provide a controller that enables PCIe devices to directly communicate with one another on a peer-to-peer basis, rather than as slave devices.

To make this work for TCA, an upgraded implementation of the FPGA, known as PEACH2, will be developed. It will incorporate NVIDIA’s GPU-Direct communication protocols to facilitate data transfers between the Tesla parts. Bandwidth will also be improved from the original PEACH version, which used four ports of PCIe Gen2 x4 as the communication link. For PEACH2, four ports of PCIe Gen2 x8 will be supported, doubling throughput.

The first prototype of the TCA is under development now. The plan is to to incorporate the technology into a second cluster, which will be glued to the Appro base cluster by early 2013. The TCA cluster will add an additional 200-plus teraflops into production, bringing the integrated HA-PACS system to over a petaflop.
 
The HA-PACS work will be a precursor to future exascale systems already in the minds of Boku and his team at Tsukuba. He believes future exascale system will require some level of accelerated computing technology due to its inherent advantages in performance and energy efficiency.

“The largest issue on the accelerated computing is how to fill the gap between its powerful internal computation performance and relatively poor external communication performance,” says Boku. “In some applications, we may need a paradigm shift toward a new generation of algorithms. HA-PACS will be the testbed for developing these algorithms.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

Weekly Twitter Roundup (Jan. 12, 2017)

January 12, 2017

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

NSF Seeks Input on Cyberinfrastructure Advances Needed

January 12, 2017

In cased you missed it, the National Science Foundation posted a “Dear Colleague Letter” (DCL) late last week seeking input on needs for the next generation of cyberinfrastructure to support science and engineering. Read more…

By John Russell

NSF Approves Bridges Phase 2 Upgrade for Broader Research Use

January 12, 2017

The recently completed phase 2 upgrade of the Bridges supercomputer at the Pittsburgh Supercomputing Center (PSC) has been approved by the National Science Foundation (NSF) making it now available for research allocations to the national scientific community, according to an announcement posted this week on the XSEDE web site. Read more…

By John Russell

Clemson Software Optimizes Big Data Transfers

January 11, 2017

Data-intensive science is not a new phenomenon as the high-energy physics and astrophysics communities can certainly attest, but today more and more scientists are facing steep data and throughput challenges fueled by soaring data volumes and the demands of global-scale collaboration. Read more…

By Tiffany Trader

HPE Extreme Performance Solutions

Remote Visualization: An Integral Technology for Upstream Oil & Gas

As the exploration and production (E&P) of natural resources evolves into an even more complex and vital task, visualization technology has become integral for the upstream oil and gas industry. Read more…

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

FPGA-Based Genome Processor Bundles Storage

January 6, 2017

Bio-processor developer Edico Genome is collaborating with storage specialist Dell EMC to bundle computing and storage for analyzing gene-sequencing data. Read more…

By George Leopold

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

UberCloud Cites Progress in HPC Cloud Computing

January 10, 2017

200 HPC cloud experiments, 80 case studies, and a ton of hands-on experience gained, that’s the harvest of four years of UberCloud HPC Experiments. Read more…

By Wolfgang Gentzsch and Burak Yenier

A Conversation with Women in HPC Director Toni Collis

January 6, 2017

In this SC16 video interview, HPCwire Managing Editor Tiffany Trader sits down with Toni Collis, the director and founder of the Women in HPC (WHPC) network, to discuss the strides made since the organization’s debut in 2014. Read more…

By Tiffany Trader

BioTeam’s Berman Charts 2017 HPC Trends in Life Sciences

January 4, 2017

Twenty years ago high performance computing was nearly absent from life sciences. Today it’s used throughout life sciences and biomedical research. Genomics and the data deluge from modern lab instruments are the main drivers, but so is the longer-term desire to perform predictive simulation in support of Precision Medicine (PM). There’s even a specialized life sciences supercomputer, ‘Anton’ from D.E. Shaw Research, and the Pittsburgh Supercomputing Center is standing up its second Anton 2 and actively soliciting project proposals. There’s a lot going on. Read more…

By John Russell

Fast Rewind: 2016 Was a Wild Ride for HPC

December 23, 2016

Some years quietly sneak by – 2016 not so much. It’s safe to say there are always forces reshaping the HPC landscape but this year’s bunch seemed like a noisy lot. Among the noisemakers: TaihuLight, DGX-1/Pascal, Dell EMC & HPE-SGI et al., KNL to market, OPA-IB chest thumping, Fujitsu-ARM, new U.S. President-elect, BREXIT, JR’s Intel Exit, Exascale (whatever that means now), NCSA@30, whither NSCI, Deep Learning mania, HPC identity crisis…You get the picture. Read more…

By John Russell

AWI Uses New Cray Cluster for Earth Sciences and Bioinformatics

December 22, 2016

The Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), headquartered in Bremerhaven, Germany, is one of the country's premier research institutes within the Helmholtz Association of German Research Centres, and is an internationally respected center of expertise for polar and marine research. In November 2015, AWI awarded Cray a contract to install a cluster supercomputer that would help the institute accelerate time to discovery. Now the effort is starting to pay off. Read more…

By Linda Barney

Addison Snell: The ‘Wild West’ of HPC Disaggregation

December 16, 2016

We caught up with Addison Snell, CEO of HPC industry watcher Intersect360, at SC16 last month, and Snell had his expected, extensive list of insights into trends driving advanced-scale technology in both the commercial and research sectors. Read more…

By Doug Black

KNUPATH Hermosa-based Commercial Boards Expected in Q1 2017

December 15, 2016

Last June tech start-up KnuEdge emerged from stealth mode to begin spreading the word about its new processor and fabric technology that’s been roughly a decade in the making. Read more…

By John Russell

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

For IBM/OpenPOWER: Success in 2017 = (Volume) Sales

January 11, 2017

To a large degree IBM and the OpenPOWER Foundation have done what they said they would – assembling a substantial and growing ecosystem and bringing Power-based products to market, all in about three years. Read more…

By John Russell

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Enlisting Deep Learning in the War on Cancer

December 7, 2016

Sometime in Q2 2017 the first ‘results’ of the Joint Design of Advanced Computing Solutions for Cancer (JDACS4C) will become publicly available according to Rick Stevens. He leads one of three JDACS4C pilot projects pressing deep learning (DL) into service in the War on Cancer. Read more…

By John Russell

Leading Solution Providers

D-Wave SC16 Update: What’s Bo Ewald Saying These Days

November 18, 2016

Tucked in a back section of the SC16 exhibit hall, quantum computing pioneer D-Wave has been talking up its new 2000-qubit processor announced in September. Forget for a moment the criticism sometimes aimed at D-Wave. This small Canadian company has sold several machines including, for example, ones to Lockheed and NASA, and has worked with Google on mapping machine learning problems to quantum computing. In July Los Alamos National Laboratory took possession of a 1000-quibit D-Wave 2X system that LANL ordered a year ago around the time of SC15. Read more…

By John Russell

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

New Genomics Pipeline Combines AWS, Local HPC, and Supercomputing

September 22, 2016

Declining DNA sequencing costs and the rush to do whole genome sequencing (WGS) of large cohort populations – think 5000 subjects now, but many more thousands soon – presents a formidable computational challenge to researchers attempting to make sense of large cohort datasets. Read more…

By John Russell

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

Dell Knights Landing Machine Sets New STAC Records

November 2, 2016

The Securities Technology Analysis Center, commonly known as STAC, has released a new report characterizing the performance of the Knight Landing-based Dell PowerEdge C6320p server on the STAC-A2 benchmarking suite, widely used by the financial services industry to test and evaluate computing platforms. The Dell machine has set new records for both the baseline Greeks benchmark and the large Greeks benchmark. Read more…

By Tiffany Trader

Deep Learning Paves Way for Better Diagnostics

September 19, 2016

Stanford researchers are leveraging GPU-based machines in the Amazon EC2 cloud to run deep learning workloads with the goal of improving diagnostics for a chronic eye disease, called diabetic retinopathy. The disease is a complication of diabetes that can lead to blindness if blood sugar is poorly controlled. It affects about 45 percent of diabetics and 100 million people worldwide, many in developing nations. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Share This