Japanese University Boots Up 800-Teraflop GPU Supercomputer

By Michael Feldman

February 14, 2012

Japan’s newest supercomputer, an 802-teraflop GPU-accelerated Appro cluster, went into production last week at the University of Tsukuba, just north of Tokyo. The machine represents the lynchpin of the university’s HA-PACS project, a three-year effort that will attempt to push the envelope on GPU-pumped supercomputing.

HA-PACS, which stands for Highly Accelerated Parallel Advanced system for Computational Sciences, is just the latest in a series “PACS” systems at the Tsukuba. The original system, known as PACS-9, was installed in 1978 and delivered 7 kiloflops (yes kiloflops!). Every two to four years thereafter, the university’s Center for Computational Sciences upgraded to a new system. The last one, PACS-CS, was deployed in 2006 and topped out at 14.3 teraflops.

The new Appro cluster represents the 8th generation supercomputer at Tsukuba and is the first to be accelerated by GPUs. As you might suspect, the vast majority of the 802 teraflops is provided by the graphics units, in this case, based on the latest NVIDIA Tesla GPU part, the M2090. Each cluster node pairs four of them with two 8-core Xeon E5 (“Sandy Bridge”) CPUs from Intel.

In aggregate, the 268-node HA-PACS machine will house 1072 GPUs and 536 CPUs, as well as a total of 34 terabytes of memory on the CPU side and an additional 6.4 terabytes for the GPUs. External storage amounts to just over half a petabyte, based on DataDirect Network’s SFA10000 gear. As a result of the high computational density afforded by the graphics chips, the entire cluster fits into just 26-racks and draw a little over 400 KW of power.

Using the top-of-the line CPUs and GPUs makes for a dense and powerful cluster, with each node delivering just shy of 3 teraflops (peak) performance. And even though most of the flops are GPU-derived (665 gigaflops per M2090), each Xeon E5 chips in with a respectable 166 gigaflops, thanks to the addition of the new Advanced Vector Extensions (AVX) instructions.

This is Appro’s second big system deployment at Tsukuba, having delivered the 95-teraflop T2K Open Supercomputer there in 2009. That machine used AMD’s quad-core Opterons and no GPUs.

Appro, by the way is one of the few server vendors offering systems equipped with Xeon E5 CPUs these days, and already claims four such systems on the TOP500 list: “Zin” (961 teraflops) at Lawrence Livermore National Lab, “Luna” (293 teraflops) at Los Alamos National Lab, “Gordon” (262 teraflops) at the San Diego Supercomputer Center and “Chama” at Sandia National Labs. That’s a nice accomplishment, considering Intel has yet to officially release the E5 chips into the wild.

CPU’s aside, the main focus for HA-PACS is to draw the most performance from the GPU hardware. The project has a two-pronged mission in this regard: to bring more big science codes to the GPU and to develop a tightly coupled parallel computing acceleration mechanism in order to “further optimize the utility of the graphics hardware.”

On the application side, HA-PACS will be porting codes to the GPU in the areas of subatomic particles, life sciences, astrophysics, nuclear physics and environmental science. For example, astrophysics applications that deal with radiation transfer can take advantage of ray tracing methods, which modern GPUs are tailor-made for. Likewise, for elementary particle physics, GPUs can be used to great advantage to accelerate dense matrix computations.

On the computational research side, the HA-PACS team is in the process of developing custom hardware to support direct communications between the GPUs. The idea is to enable the graphics processors to quickly shuffle data between themselves without the overhead involved in going through the CPU.

This custom hardware, known as the Tightly Coupled Accelerator (TCA), will be distinct from the HA-PACS base cluster from Appro, but will eventually be integrated with it, says Taisuke Boku, deputy director of Center for Computational Sciences at University of Tsukuba. According to him, TCA will use PCIe as a communication channel between the GPUs and employ FPGA technology to facilitate this.

The FPGA will be based on an existing implementation developed at Tsukuba called PEACH, which stands for PCI Express Adaptive Communication Hub. The idea is to provide a controller that enables PCIe devices to directly communicate with one another on a peer-to-peer basis, rather than as slave devices.

To make this work for TCA, an upgraded implementation of the FPGA, known as PEACH2, will be developed. It will incorporate NVIDIA’s GPU-Direct communication protocols to facilitate data transfers between the Tesla parts. Bandwidth will also be improved from the original PEACH version, which used four ports of PCIe Gen2 x4 as the communication link. For PEACH2, four ports of PCIe Gen2 x8 will be supported, doubling throughput.

The first prototype of the TCA is under development now. The plan is to to incorporate the technology into a second cluster, which will be glued to the Appro base cluster by early 2013. The TCA cluster will add an additional 200-plus teraflops into production, bringing the integrated HA-PACS system to over a petaflop.
 
The HA-PACS work will be a precursor to future exascale systems already in the minds of Boku and his team at Tsukuba. He believes future exascale system will require some level of accelerated computing technology due to its inherent advantages in performance and energy efficiency.

“The largest issue on the accelerated computing is how to fill the gap between its powerful internal computation performance and relatively poor external communication performance,” says Boku. “In some applications, we may need a paradigm shift toward a new generation of algorithms. HA-PACS will be the testbed for developing these algorithms.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

What’s New in HPC Research: Wind Farms, Gravitational Lenses, Web Portals & More

February 19, 2019

In this bimonthly feature, HPCwire highlights newly published research in the high-performance computing community and related domains. From parallel programming to exascale to quantum computing, the details are here. Read more…

By Oliver Peckham

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from the nanoscale to the astronomic, from calculating quantum effe Read more…

By Ken Strandberg

What Will IBM’s AI Debater Learn from Its Loss?

February 14, 2019

The utility of IBM’s latest man-versus-machine gambit is debatable. At the very least its Project Debater got us thinking about the potential uses of artificial intelligence as a way of helping humans sift through al Read more…

By George Leopold

HPE Extreme Performance Solutions

HPE Systems With Intel Omni-Path: Architected for Value and Accessible High-Performance Computing

Today’s high-performance computing (HPC) and artificial intelligence (AI) users value high performing clusters. And the higher the performance that their system can deliver, the better. Read more…

IBM Accelerated Insights

Medical Research Powered by Data

“We’re all the same, but we’re unique as well. In that uniqueness lies all of the answers….”

  • Mark Tykocinski, MD, Provost, Executive Vice President for Academic Affairs, Thomas Jefferson University

Getting the answers to what causes some people to develop diseases and not others is driving the groundbreaking medical research being conducted by the Computational Medicine Center at Thomas Jefferson University in Philadelphia. Read more…

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst of bankruptcy proceedings. According to Dutch news site Drimb Read more…

By Tiffany Trader

Insights from Optimized Codes on Cineca’s Marconi

February 15, 2019

What can you do with 381,392 CPU cores? For Cineca, it means enabling computational scientists to expand a large part of the world’s body of knowledge from th Read more…

By Ken Strandberg

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

UC Berkeley Paper Heralds Rise of Serverless Computing in the Cloud – Do You Agree?

February 13, 2019

Almost exactly ten years to the day from publishing of their widely-read, seminal paper on cloud computing, UC Berkeley researchers have issued another ambitious examination of cloud computing - Cloud Programming Simplified: A Berkeley View on Serverless Computing. The new work heralds the rise of ‘serverless computing’ as the next dominant phase of cloud computing. Read more…

By John Russell

Iowa ‘Grows Its Own’ to Fill the HPC Workforce Pipeline

February 13, 2019

The global workforce that supports advanced computing, scientific software and high-speed research networks is relatively small when you stop to consider the magnitude of the transformative discoveries it empowers. Technical conferences provide a forum where specialists convene to learn about the latest innovations and schedule face-time with colleagues from other institutions. Read more…

By Elizabeth Leake, STEM-Trek

Trump Signs Executive Order Launching U.S. AI Initiative

February 11, 2019

U.S. President Donald Trump issued an Executive Order (EO) today launching a U.S Artificial Intelligence Initiative. The new initiative - Maintaining American L Read more…

By John Russell

Celebrating Women in Science: Meet Four Women Leading the Way in HPC

February 11, 2019

One only needs to look around at virtually any CS/tech conference to realize that women are underrepresented, and that holds true of HPC. SC hosts over 13,000 H Read more…

By AJ Lauer

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Assessing Government Shutdown’s Impact on HPC

February 6, 2019

After a 35-day federal government shutdown, the longest in U.S. history, government agencies are taking stock of the damage -- and girding for a potential secon Read more…

By Tiffany Trader

Quantum Computing Will Never Work

November 27, 2018

Amid the gush of money and enthusiastic predictions being thrown at quantum computing comes a proposed cold shower in the form of an essay by physicist Mikhail Read more…

By John Russell

Cray Unveils Shasta, Lands NERSC-9 Contract

October 30, 2018

Cray revealed today the details of its next-gen supercomputing architecture, Shasta, selected to be the next flagship system at NERSC. We've known of the code-name "Shasta" since the Argonne slice of the CORAL project was announced in 2015 and although the details of that plan have changed considerably, Cray didn't slow down its timeline for Shasta. Read more…

By Tiffany Trader

The Case Against ‘The Case Against Quantum Computing’

January 9, 2019

It’s not easy to be a physicist. Richard Feynman (basically the Jimi Hendrix of physicists) once said: “The first principle is that you must not fool yourse Read more…

By Ben Criger

AMD Sets Up for Epyc Epoch

November 16, 2018

It’s been a good two weeks, AMD’s Gary Silcott and Andy Parma told me on the last day of SC18 in Dallas at the restaurant where we met to discuss their show news and recent successes. Heck, it’s been a good year. Read more…

By Tiffany Trader

Intel Reportedly in $6B Bid for Mellanox

January 30, 2019

The latest rumors and reports around an acquisition of Mellanox focus on Intel, which has reportedly offered a $6 billion bid for the high performance interconn Read more…

By Doug Black

US Leads Supercomputing with #1, #2 Systems & Petascale Arm

November 12, 2018

The 31st Supercomputing Conference (SC) - commemorating 30 years since the first Supercomputing in 1988 - kicked off in Dallas yesterday, taking over the Kay Ba Read more…

By Tiffany Trader

Looking for Light Reading? NSF-backed ‘Comic Books’ Tackle Quantum Computing

January 28, 2019

Still baffled by quantum computing? How about turning to comic books (graphic novels for the well-read among you) for some clarity and a little humor on QC. The Read more…

By John Russell

ClusterVision in Bankruptcy, Fate Uncertain

February 13, 2019

ClusterVision, European HPC specialists that have built and installed over 20 Top500-ranked systems in their nearly 17-year history, appear to be in the midst o Read more…

By Tiffany Trader

Leading Solution Providers

SC 18 Virtual Booth Video Tour

Advania @ SC18 AMD @ SC18
ASRock Rack @ SC18
DDN Storage @ SC18
HPE @ SC18
IBM @ SC18
Lenovo @ SC18 Mellanox Technologies @ SC18
NVIDIA @ SC18
One Stop Systems @ SC18
Oracle @ SC18 Panasas @ SC18
Supermicro @ SC18 SUSE @ SC18 TYAN @ SC18
Verne Global @ SC18

Contract Signed for New Finnish Supercomputer

December 13, 2018

After the official contract signing yesterday, configuration details were made public for the new BullSequana system that the Finnish IT Center for Science (CSC Read more…

By Tiffany Trader

Deep500: ETH Researchers Introduce New Deep Learning Benchmark for HPC

February 5, 2019

ETH researchers have developed a new deep learning benchmarking environment – Deep500 – they say is “the first distributed and reproducible benchmarking s Read more…

By John Russell

IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans

January 10, 2019

IBM made three significant quantum computing announcements at CES this week. One was introduction of IBM Q System One; it’s really the integration of IBM’s Read more…

By John Russell

HPC Reflections and (Mostly Hopeful) Predictions

December 19, 2018

So much ‘spaghetti’ gets tossed on walls by the technology community (vendors and researchers) to see what sticks that it is often difficult to peer through Read more…

By John Russell

IBM Bets $2B Seeking 1000X AI Hardware Performance Boost

February 7, 2019

For now, AI systems are mostly machine learning-based and “narrow” – powerful as they are by today's standards, they're limited to performing a few, narro Read more…

By Doug Black

Nvidia’s Jensen Huang Delivers Vision for the New HPC

November 14, 2018

For nearly two hours on Monday at SC18, Jensen Huang, CEO of Nvidia, presented his expansive view of the future of HPC (and computing in general) as only he can do. Animated. Backstopped by a stream of data charts, product photos, and even a beautiful image of supernovae... Read more…

By John Russell

The Deep500 – Researchers Tackle an HPC Benchmark for Deep Learning

January 7, 2019

How do you know if an HPC system, particularly a larger-scale system, is well-suited for deep learning workloads? Today, that’s not an easy question to answer Read more…

By John Russell

Intel Confirms 48-Core Cascade Lake-AP for 2019

November 4, 2018

As part of the run-up to SC18, taking place in Dallas next week (Nov. 11-16), Intel is doling out info on its next-gen Cascade Lake family of Xeon processors, specifically the “Advanced Processor” version (Cascade Lake-AP), architected for high-performance computing, artificial intelligence and infrastructure-as-a-service workloads. Read more…

By Tiffany Trader

  • arrow
  • Click Here for More Headlines
  • arrow
Do NOT follow this link or you will be banned from the site!
Share This