Japanese University Boots Up 800-Teraflop GPU Supercomputer

By Michael Feldman

February 14, 2012

Japan’s newest supercomputer, an 802-teraflop GPU-accelerated Appro cluster, went into production last week at the University of Tsukuba, just north of Tokyo. The machine represents the lynchpin of the university’s HA-PACS project, a three-year effort that will attempt to push the envelope on GPU-pumped supercomputing.

HA-PACS, which stands for Highly Accelerated Parallel Advanced system for Computational Sciences, is just the latest in a series “PACS” systems at the Tsukuba. The original system, known as PACS-9, was installed in 1978 and delivered 7 kiloflops (yes kiloflops!). Every two to four years thereafter, the university’s Center for Computational Sciences upgraded to a new system. The last one, PACS-CS, was deployed in 2006 and topped out at 14.3 teraflops.

The new Appro cluster represents the 8th generation supercomputer at Tsukuba and is the first to be accelerated by GPUs. As you might suspect, the vast majority of the 802 teraflops is provided by the graphics units, in this case, based on the latest NVIDIA Tesla GPU part, the M2090. Each cluster node pairs four of them with two 8-core Xeon E5 (“Sandy Bridge”) CPUs from Intel.

In aggregate, the 268-node HA-PACS machine will house 1072 GPUs and 536 CPUs, as well as a total of 34 terabytes of memory on the CPU side and an additional 6.4 terabytes for the GPUs. External storage amounts to just over half a petabyte, based on DataDirect Network’s SFA10000 gear. As a result of the high computational density afforded by the graphics chips, the entire cluster fits into just 26-racks and draw a little over 400 KW of power.

Using the top-of-the line CPUs and GPUs makes for a dense and powerful cluster, with each node delivering just shy of 3 teraflops (peak) performance. And even though most of the flops are GPU-derived (665 gigaflops per M2090), each Xeon E5 chips in with a respectable 166 gigaflops, thanks to the addition of the new Advanced Vector Extensions (AVX) instructions.

This is Appro’s second big system deployment at Tsukuba, having delivered the 95-teraflop T2K Open Supercomputer there in 2009. That machine used AMD’s quad-core Opterons and no GPUs.

Appro, by the way is one of the few server vendors offering systems equipped with Xeon E5 CPUs these days, and already claims four such systems on the TOP500 list: “Zin” (961 teraflops) at Lawrence Livermore National Lab, “Luna” (293 teraflops) at Los Alamos National Lab, “Gordon” (262 teraflops) at the San Diego Supercomputer Center and “Chama” at Sandia National Labs. That’s a nice accomplishment, considering Intel has yet to officially release the E5 chips into the wild.

CPU’s aside, the main focus for HA-PACS is to draw the most performance from the GPU hardware. The project has a two-pronged mission in this regard: to bring more big science codes to the GPU and to develop a tightly coupled parallel computing acceleration mechanism in order to “further optimize the utility of the graphics hardware.”

On the application side, HA-PACS will be porting codes to the GPU in the areas of subatomic particles, life sciences, astrophysics, nuclear physics and environmental science. For example, astrophysics applications that deal with radiation transfer can take advantage of ray tracing methods, which modern GPUs are tailor-made for. Likewise, for elementary particle physics, GPUs can be used to great advantage to accelerate dense matrix computations.

On the computational research side, the HA-PACS team is in the process of developing custom hardware to support direct communications between the GPUs. The idea is to enable the graphics processors to quickly shuffle data between themselves without the overhead involved in going through the CPU.

This custom hardware, known as the Tightly Coupled Accelerator (TCA), will be distinct from the HA-PACS base cluster from Appro, but will eventually be integrated with it, says Taisuke Boku, deputy director of Center for Computational Sciences at University of Tsukuba. According to him, TCA will use PCIe as a communication channel between the GPUs and employ FPGA technology to facilitate this.

The FPGA will be based on an existing implementation developed at Tsukuba called PEACH, which stands for PCI Express Adaptive Communication Hub. The idea is to provide a controller that enables PCIe devices to directly communicate with one another on a peer-to-peer basis, rather than as slave devices.

To make this work for TCA, an upgraded implementation of the FPGA, known as PEACH2, will be developed. It will incorporate NVIDIA’s GPU-Direct communication protocols to facilitate data transfers between the Tesla parts. Bandwidth will also be improved from the original PEACH version, which used four ports of PCIe Gen2 x4 as the communication link. For PEACH2, four ports of PCIe Gen2 x8 will be supported, doubling throughput.

The first prototype of the TCA is under development now. The plan is to to incorporate the technology into a second cluster, which will be glued to the Appro base cluster by early 2013. The TCA cluster will add an additional 200-plus teraflops into production, bringing the integrated HA-PACS system to over a petaflop.
 
The HA-PACS work will be a precursor to future exascale systems already in the minds of Boku and his team at Tsukuba. He believes future exascale system will require some level of accelerated computing technology due to its inherent advantages in performance and energy efficiency.

“The largest issue on the accelerated computing is how to fill the gap between its powerful internal computation performance and relatively poor external communication performance,” says Boku. “In some applications, we may need a paradigm shift toward a new generation of algorithms. HA-PACS will be the testbed for developing these algorithms.”

Subscribe to HPCwire's Weekly Update!

Be the most informed person in the room! Stay ahead of the tech trends with industy updates delivered to you every week!

DDN Enables 50TB/Day Trans-Pacific Data Transfer for Yahoo Japan

December 6, 2016

Transferring data from one data center to another in search of lower regional energy costs isn’t a new concept, but Yahoo Japan is putting the idea into transcontinental effect with a system that transfers 50TB of data a day from Japan to the U.S., where electricity costs a quarter of the rates in Japan. Read more…

By Doug Black

Infographic Highlights Career of Admiral Grace Murray Hopper

December 5, 2016

Dr. Grace Murray Hopper (December 9, 1906 – January 1, 1992) was an early pioneer of computer science and one of the most famous women achievers in a field dominated by men. Read more…

By Staff

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Embraces FPGAs, ‘Elastic’ GPUs

December 2, 2016

A new instance type rolled out this week by Amazon Web Services is based on customizable field programmable gate arrays that promise to strike a balance between performance and cost as emerging workloads create requirements often unmet by general-purpose processors. Read more…

By George Leopold

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Weekly Twitter Roundup (Dec. 1, 2016)

December 1, 2016

Here at HPCwire, we aim to keep the HPC community apprised of the most relevant and interesting news items that get tweeted throughout the week. Read more…

By Thomas Ayres

HPC Career Notes (Dec. 2016)

December 1, 2016

In this monthly feature, we’ll keep you up-to-date on the latest career developments for individuals in the high performance computing community. Read more…

By Thomas Ayres

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Ganthier, Turkel on the Dell EMC Road Ahead

December 5, 2016

Who is Dell EMC and why should you care? Glad you asked is Jim Ganthier’s quick response. Ganthier is SVP for validated solutions and high performance computing for the new (even bigger) technology giant Dell EMC following Dell’s acquisition of EMC in September. In this case, says Ganthier, the blending of the two companies is a 1+1 = 5 proposition. Not bad math if you can pull it off. Read more…

By John Russell

AWS Launches Massive 100 Petabyte ‘Sneakernet’

December 1, 2016

Amazon Web Services now offers a way to move data into its cloud by the truckload. Read more…

By Tiffany Trader

Lighting up Aurora: Behind the Scenes at the Creation of the DOE’s Upcoming 200 Petaflops Supercomputer

December 1, 2016

In April 2015, U.S. Department of Energy Undersecretary Franklin Orr announced that Intel would be the prime contractor for Aurora: Read more…

By Jan Rowell

Seagate-led SAGE Project Delivers Update on Exascale Goals

November 29, 2016

Roughly a year and a half after its launch, the SAGE exascale storage project led by Seagate has delivered a substantive interim report – Data Storage for Extreme Scale. Read more…

By John Russell

Nvidia Sees Bright Future for AI Supercomputing

November 23, 2016

Graphics chipmaker Nvidia made a strong showing at SC16 in Salt Lake City last week. Read more…

By Tiffany Trader

HPE-SGI to Tackle Exascale and Enterprise Targets

November 22, 2016

At first blush, and maybe second blush too, Hewlett Packard Enterprise’s (HPE) purchase of SGI seems like an unambiguous win-win. SGI’s advanced shared memory technology, its popular UV product line (Hanna), deep vertical market expertise, and services-led go-to-market capability all give HPE a leg up in its drive to remake itself. Bear in mind HPE came into existence just a year ago with the split of Hewlett-Packard. The computer landscape, including HPC, is shifting with still unclear consequences. One wonders who’s next on the deal block following Dell’s recent merger with EMC. Read more…

By John Russell

Intel Details AI Hardware Strategy for Post-GPU Age

November 21, 2016

Last week at SC16, Intel revealed its product roadmap for embedding its processors with key capabilities and attributes needed to take artificial intelligence (AI) to the next level. Read more…

By Alex Woodie

SC Says Farewell to Salt Lake City, See You in Denver

November 18, 2016

After an intense four-day flurry of activity (and a cold snap that brought some actual snow flurries), the SC16 show floor closed yesterday (Thursday) and the always-extensive technical program wound down today. Read more…

By Tiffany Trader

Why 2016 Is the Most Important Year in HPC in Over Two Decades

August 23, 2016

In 1994, two NASA employees connected 16 commodity workstations together using a standard Ethernet LAN and installed open-source message passing software that allowed their number-crunching scientific application to run on the whole “cluster” of machines as if it were a single entity. Read more…

By Vincent Natoli, Stone Ridge Technology

IBM Advances Against x86 with Power9

August 30, 2016

After offering OpenPower Summit attendees a limited preview in April, IBM is unveiling further details of its next-gen CPU, Power9, which the tech mainstay is counting on to regain market share ceded to rival Intel. Read more…

By Tiffany Trader

AWS Beats Azure to K80 General Availability

September 30, 2016

Amazon Web Services has seeded its cloud with Nvidia Tesla K80 GPUs to meet the growing demand for accelerated computing across an increasingly-diverse range of workloads. The P2 instance family is a welcome addition for compute- and data-focused users who were growing frustrated with the performance limitations of Amazon's G2 instances, which are backed by three-year-old Nvidia GRID K520 graphics cards. Read more…

By Tiffany Trader

Think Fast – Is Neuromorphic Computing Set to Leap Forward?

August 15, 2016

Steadily advancing neuromorphic computing technology has created high expectations for this fundamentally different approach to computing. Read more…

By John Russell

The Exascale Computing Project Awards $39.8M to 22 Projects

September 7, 2016

The Department of Energy’s Exascale Computing Project (ECP) hit an important milestone today with the announcement of its first round of funding, moving the nation closer to its goal of reaching capable exascale computing by 2023. Read more…

By Tiffany Trader

HPE Gobbles SGI for Larger Slice of $11B HPC Pie

August 11, 2016

Hewlett Packard Enterprise (HPE) announced today that it will acquire rival HPC server maker SGI for $7.75 per share, or about $275 million, inclusive of cash and debt. The deal ends the seven-year reprieve that kept the SGI banner flying after Rackable Systems purchased the bankrupt Silicon Graphics Inc. for $25 million in 2009 and assumed the SGI brand. Bringing SGI into its fold bolsters HPE's high-performance computing and data analytics capabilities and expands its position... Read more…

By Tiffany Trader

ARM Unveils Scalable Vector Extension for HPC at Hot Chips

August 22, 2016

ARM and Fujitsu today announced a scalable vector extension (SVE) to the ARMv8-A architecture intended to enhance ARM capabilities in HPC workloads. Fujitsu is the lead silicon partner in the effort (so far) and will use ARM with SVE technology in its post K computer, Japan’s next flagship supercomputer planned for the 2020 timeframe. This is an important incremental step for ARM, which seeks to push more aggressively into mainstream and HPC server markets. Read more…

By John Russell

IBM Debuts Power8 Chip with NVLink and Three New Systems

September 8, 2016

Not long after revealing more details about its next-gen Power9 chip due in 2017, IBM today rolled out three new Power8-based Linux servers and a new version of its Power8 chip featuring Nvidia’s NVLink interconnect. Read more…

By John Russell

Leading Solution Providers

Vectors: How the Old Became New Again in Supercomputing

September 26, 2016

Vector instructions, once a powerful performance innovation of supercomputing in the 1970s and 1980s became an obsolete technology in the 1990s. But like the mythical phoenix bird, vector instructions have arisen from the ashes. Here is the history of a technology that went from new to old then back to new. Read more…

By Lynd Stringer

US, China Vie for Supercomputing Supremacy

November 14, 2016

The 48th edition of the TOP500 list is fresh off the presses and while there is no new number one system, as previously teased by China, there are a number of notable entrants from the US and around the world and significant trends to report on. Read more…

By Tiffany Trader

Intel Launches Silicon Photonics Chip, Previews Next-Gen Phi for AI

August 18, 2016

At the Intel Developer Forum, held in San Francisco this week, Intel Senior Vice President and General Manager Diane Bryant announced the launch of Intel's Silicon Photonics product line and teased a brand-new Phi product, codenamed "Knights Mill," aimed at machine learning workloads. Read more…

By Tiffany Trader

CPU Benchmarking: Haswell Versus POWER8

June 2, 2015

With OpenPOWER activity ramping up and IBM’s prominent role in the upcoming DOE machines Summit and Sierra, it’s a good time to look at how the IBM POWER CPU stacks up against the x86 Xeon Haswell CPU from Intel. Read more…

By Tiffany Trader

Beyond von Neumann, Neuromorphic Computing Steadily Advances

March 21, 2016

Neuromorphic computing – brain inspired computing – has long been a tantalizing goal. The human brain does with around 20 watts what supercomputers do with megawatts. And power consumption isn’t the only difference. Fundamentally, brains ‘think differently’ than the von Neumann architecture-based computers. While neuromorphic computing progress has been intriguing, it has still not proven very practical. Read more…

By John Russell

Dell EMC Engineers Strategy to Democratize HPC

September 29, 2016

The freshly minted Dell EMC division of Dell Technologies is on a mission to take HPC mainstream with a strategy that hinges on engineered solutions, beginning with a focus on three industry verticals: manufacturing, research and life sciences. "Unlike traditional HPC where everybody bought parts, assembled parts and ran the workloads and did iterative engineering, we want folks to focus on time to innovation and let us worry about the infrastructure," said Jim Ganthier, senior vice president, validated solutions organization at Dell EMC Converged Platforms Solution Division. Read more…

By Tiffany Trader

Container App ‘Singularity’ Eases Scientific Computing

October 20, 2016

HPC container platform Singularity is just six months out from its 1.0 release but already is making inroads across the HPC research landscape. It's in use at Lawrence Berkeley National Laboratory (LBNL), where Singularity founder Gregory Kurtzer has worked in the High Performance Computing Services (HPCS) group for 16 years. Read more…

By Tiffany Trader

Micron, Intel Prepare to Launch 3D XPoint Memory

August 16, 2016

Micron Technology used last week’s Flash Memory Summit to roll out its new line of 3D XPoint memory technology jointly developed with Intel while demonstrating the technology in solid-state drives. Micron claimed its Quantx line delivers PCI Express (PCIe) SSD performance with read latencies at less than 10 microseconds and writes at less than 20 microseconds. Read more…

By George Leopold

  • arrow
  • Click Here for More Headlines
  • arrow
Share This